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Of late, increasing evidence points towards deformation about
second phase particles as being the controlling mechanism in the duc-
tile fracture of high strength materials. The present study was an
attempt to correlate the dislocation dynamics of a temsile bar to the

discontinuous crack propagation in a fracture toughness test.

“xperimental Techniques and Results

An acoustic emission technique(l) recorded the low amplitude dis=-
location events associated with plastic flow in tensile specimens. In
another set of tests, a stress-wave emission device (2) recorded large=
amplitude cracking events in 6-inch wide center-cracked plates. The
material was %-inch thick 7075 aluminum aged to four conditions.

From engineering and true stress-strain plots, the data for the
first four columns of Table 1 were obtained. The acoustic emission
data were found to be described by
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where N is the number of counts per second; mﬁ and ¢ are constants;

and e is the true plastic strain. Such a plot is shown in Fig. 1
for the peak-aged condition. Since dl&/dep =0 in Eq. (1) gives
ep =1/¢4 , 9 is obtained directly from the peak of the N-sp plot
and mﬁ is adjusted to give the bestfit to the downward slope of the curve.
From eight large plate fracture tests, 12 sets of data were ob-
tained representing fracture instabilities. About half of these were
large shear instabilities in the as-quenched samples which could be
directly measured. These were associated with stress intensity levels
ranging from 66,400 to 102,500 psi-in%. From the other conditions,
measures of the average length of crack jump, Zpps , were determined
from the macroscopic growth increment divided by the number of stress
waves, Ngug » occurring in the increment. . These were associated with
stress intensity levels ranging from 37,000 to 75,000 psi-in%. The
results, as given in terms of the average {.pg for each condition

correlated with both n and & , the result for ¢ being shown in Fig. 2.
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For the second class, one can interpret N as the rate of disloca-
iton hreakaway(s) or, in the present case, the rate of production of
geometrically necessary dislocations. Physically, dpG/dep could
de¢crease to some small value when particle decohesion, shear or frac-

ture started. Keeping the same functional form as above, then
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where « 1is some constant on the order of 103 to 104. If one integrates
£q. (3), then a continuously increasing value of ¢ with strain is
(2,5)

found, In any event, considering the recent literature
conclude that one of these approaches represents the likely source for
At this point it is of value to consider pos-

, one may

the acoustic emission.

sible fracture models.
Krafft(6) suggested that fracture proceeded in a process zome, dp,

close to the crack tip when the strain reached a critical value, ecg .
For a plane strain situation where Poisson's ratio is 0.3, using the

conditions cry,cx=oy and crz=2\)cy leads to

E(8 mdp] ® )
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5 B
intensity and E is Young's modulus.

where K is the applied stress
the strain associated with a macroscopic

Krafft suggested that ecggp is
tensile instability. However,

a function of dislocation density.
tic instability between particles, then one could use the criterion

that dp_n/de_ =0 . FromEq. (2) this occurs at ¢ = 1/¢ so that
mp/ %€ p CR

the stress-strain relationship is also

Thus, if one considers local plas-

the Krafft criterion becomes

ap = 2= &2 5)
For the high stress intensity levels where conditions are not plane
strain, Eq. (5) is about two orders of magnitude too high. However,
if one considers just the relatively plane strain cases, then for
KA440,000psi-in% and ¢ ~ 80 , dp is calculated to be 0.004 in.
while the observed values ranged from 0.001 to 0.004 in.

For the second model, a strain distribution based upon the tensile
analogy of the elastic-plastic Mode III situation is used to define the
total region in the vicinity of the particle where the fracture strain
is exceeded. 1In this case, the condition for fracture could be that
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to some low value ag described above,
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i As a firgt approximation, let . % 7075-T6 ALUMINUM i
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If, as the final event of microvoid coalescence, this strain is that Eg “N
leading to fracture, the insertion into the strain distribution gives § “ =m'pepe'“’ B q =
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of Eq. (6) to the observed crack jumps is seen in Fig. (3). 5x0™ 10
In summary,
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it can be said that both fracture models give the
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mate nature of several of the assumptions.
tion of the particle characteristics,

differentiate between these two approa

Since ¢ is also a func-
it is not possible to further
ches without additional study.
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