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The fundamentals of incubation time approach in fracture dynamic problems will be outlined. The 
continual (kinetic) formulation of incubation time based fracture dynamics will be discussed. It 
provides the investigation of microscale incubation processes anticipating the macrofracture event 
as well as the dynamic-strength criterion at the macroscale. The abilities of proposed approach in 
description of dynamic crack propagation process will be considered. 
 

1. Structural-Temporal Criterion of Fracture 
Nowadays, the nonoperability of traditional quasistatic fracture models in the case 
when a fracture happens in rather short time intervals after the beginning of 
exterior pulse application (which corresponds to high loading rates) became 
apparent. At the modeling of dynamic fracture processes one should consider an 
effect of high local deformations together with elastic resistance of the material. 
The structural-temporal approach integrally considering this phenomenon was 
proposed by Morozov, Petrov and Utkin [1]. The brief exposition of its main 
statements is provided further (full description one can find in [2, 3]). 
 
Firstly, let consider the static fracture of quasi-brittle materials. For simplicity we 
will assume some arbitrary two-dimensional stress field (e.g. the plane strain) and 
suppose that fracture will happen along some direction    being the symmetry 
line. It is known, that in “non-simple” static problems a classical critical strength 
(as well as critical fracture toughness) approach does not work (e.g., for the crack 
growing from an angular vertex, when the stress field has a non-root 
singularity [4]). But there is the approach working well in the most complicated 
static problems – namely, Neuber-Novozhilov’s approach, known also as 
nonlocal fracture mechanics. Referring to the classical force approach of fracture 
mechanics, in the case of quasistatic loading a fracture occurs when the 
instantaneous local force acting in the supposed place of rupture attains a critical 
value:  ≤   . In the terms of continual stress field   it can be written in the form  

  ( ′)  ′
 

   ≤  ∗ , (1) 

where   is some still undefined linear size describing the spatial structure of solid 
and  ∗ could be considered as some critical stress introduced instead of critical 
force   . The criterion (1) is known as Neuber-Novozhilov criterion. The basic 
principles of Neuber-Novozhilov’s approach could be reduced to the following 
statements (similar to the basic principles of quantum mechanics): 



1. all solids consists of spatial-structural elements of finite size; 
2. an elementary act of fracture is a fracture of one structural element; 
3. criterion parameters should be chosen to preserve the results of classical 

fracture theory in the limit of low load rates. 
Regarding the case of intact fracture and corresponding fracture criterion of 
critical stress  ≤    (where    is the static strength of the material) and applying 
the third basic principle one will obtain  ∗ =   . On the other hand, considering 
the classical Griffith crack problem and corresponding Irwin fracture criterion   ≤     (where    is the stress intensity factor and     is the static fracture 
toughness), after substitution of the tensile stress in the crack tip  = 0 

 ( ) =   √2  +  (1),    → 0 (2) 

into criterion (1) we obtain  = 2  ⁄  (     ⁄ ) . 
 
Outlined Neuber-Novozhilov’s approach, which permits efficacious fracture 
forecast for quasi-static loading of brittle materials, gives us the background to 
describe the dynamic fracture phenomenon. Formally speaking, nonlocal fracture 
mechanics postulate the trivial fact: the fracture process has to be considered not 
in the point but in some volume (structural element) and the characteristic size of 
this volume is the structural size  . This postulate discovers the kinetic nature of 
fracture process: when we consider a fracture of some volume we have to admit 
that fracture does not occur instantaneously but material needs some time to 
release stresses and form a fracture surface. In static case, when this time is much 
less then time of load action, it can be neglected; but in the case of dynamic 
fracture, when these times are comparable, we have to take into consideration not 
only the instantaneous components of the force field but also the time of its 
action. And the criterion of fracture could be formulated in the following manner: 
the force pulse acting during some time period attains its critical value   ( ) ≤   ,    ( ) = ∫ ∫  ( ′,  ′)  ′      ′    ,     =     . (3) 

The meaning of temporal scale   (called incubation time of fracture) will be soon 
discussed. Now, we just note that it could be considered as a characteristic time of 
fracture of one structural element. Thereby, the structural-temporal criterion (3) 
operates with two material scales: the temporal scale   and spatial scale  . 
 
Numerous investigations (see, e.g. [2,3]) shown that structural-temporal approach 
is able to catch all the variety of experimentally observed effects of dynamic 
fracture, using just the triple of experimentally defined material parameters   ,     and  . But one has to keep in mind that, strictly speaking, they are not 
material constants but depend on sample size (or geometrical scale). Indeed, it is 
well known that material parameters like static strength    and static fracture 
toughness     are size-dependent (see, e.g. [5]). Therefore, the spatial fracture 
scale   is size-dependent as well. And then, the incubation time   being the 



characteristic time of fracture of one structural element depends on sample size 
too. That is, all the parameters entering into criterion (3) have to be considered as 
material constants at the given geometrical scale. Finalizing the brief exposition 
of structural-temporal approach, let us analyze two important partial cases. The 
first one is the case, when the stress field does not depend on time and the 
criterion (3) coincides with Neuber-Novozhilov criterion. Another one, when the 
stress field near supposed rupture point depends only on time (e.g., in spalling 
fracture) and the criterion (3) turns into 1   ( ′)  ′ 

   ≤   . (4) 

In particular case of macrocrack presence, resequencing the procedure shown 
above, we obtain 1    ( ′)  ′ 

   ≤    . (5) 

Relying on considerations used to introduce criterion (3), one can expect that 
eq. (4), called the incubation time criterion, has to be a generalization of classical 
quasistatic approaches. Indeed, when we can neglect by incubation time (in static 
case it is much less than the time of load action) then the criterion (4) becomes the 
classical critical stress (or (5) – Irwin’s critical fracture toughness) criterion. 

2. Nature of Incubation Time 
Now, let try to understand deeper the physical meaning of incubation time. 
Firstly, we are going to consider the tensile fracture test of uniform bar subjected 
to external load producing the uniform stress field  ( ) =   ( ), where   is 
some constant stress and  ( ) is the unit step function. Applying the incubation 
time criterion (4) we can define the dependence of time to fracture  ∗ (time period 
from the moment of loading application till the moment of sample dividing into 
two parts) from external load  . There are three possibilities:  =   , then  ∗ =  ;  >   , then  ∗ =     <  ; or  <   , and then  ∗ = ∞. So, it is clear that   is the 
time needed to produce a rupture by stress equaled to static material strength. By 
the way, it means that incubation time can be measured directly from quasistatic 
tensile fracture test as the temporal characteristic of the front of unloading wave 
propagating inside the sample after rupture. 
 
From another point, it can be demonstrated that   is the minimal time needed to 
produce the rupture in cleavage problem by threshold loading pulse (see, 
e.g., [2]). That is   defines the time asymptote (so called dynamic branch) of the 
temporal dependence of strength for considered material. Indeed, let us consider 
the classical one-dimensional cleavage problem: the reflection of a triangular 



compressive loading pulse from the free end of a semi-infinite bar located along  -axis at  > 0. The incident pulse    and reflected pulse    are defined by  

 ∓ = ∓  1 −   ±        (  ±  ) −  (  ±  −    ) . (6) 

Here   is the loading pulse amplitude,    is its duration and   is the velocity of 
elastic waves in considered material. The combined stress  =   +    attains its 
maximum (tensile) value for the first time at the point  ∗ =    2⁄ . To determine 
the temporal dependence of strength (the dependence between threshold loading 
amplitude and time to fracture), we have to calculate the rupture amplitude  ∗, 
minimal for every given pulse duration   :  

max   ( ′)  ′
 

   =   . (7) 

Here the normalized (dimensionless) time  =   ⁄  is introduced. It easy to see 
from (6, 7) that the required dependence has the form 

 ∗ =  1 + 1 4⁄1 −    ∗⁄ , 1 ≤  ∗   ⁄ ≤ 21 +    ∗⁄ ,  ∗   ⁄ ≥ 2  . (8) 

Here  ∗ =  ∗  ⁄  is the time to fracture, defined as the time moment when integral 
in (4) attains its critical value. The temporal dependence of strength (8) for 
aluminum is plotted at Fig. 1, together with experimental data of Regel et. al. [6]. 
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Fig. 1. Temporal dependence of strength for alluminium 
 



Finally, having the instruments to measure the incubation time for given 
materials, we will show at the simplest example that the incubation time is closely 
connected to the relaxation processes, accompanying rupture development. Let 
consider a spatially isotropic quasi-static fracture problem and accept the simplest 
deformation based fracture criterion at the given point (supposed point of rupture)   ( ) ≤   . (9) 

Here   (the volumetric elasticity modulus) and    (the static strength) are 
material constants, and  ( ) is a volume deformation (a relative volume variation, 
caused by deformation and microdamage accumulation) at the given point under 
some stress field  ( ). In the case of linear-elastic solid behavior  ( ) =   ( ) 
and inequality (9) coincides with the critical stress criterion of fracture  ( ) ≤   . 
But in the case of viscous deformation the material behavior could be described 
by the rheological law (Kelvin-Voigt model) 

 ( ) =   ( ) +    ( )  , (10) 

where   is the viscosity factor. Then  

 ( ) = 1  exp −  ( −  )  
 ∞

 ( )  =
= −1  exp  −    ∞

  ( −  )  .      (11) 

The kernel of integrand in eq. (11) is the function exp(−   ⁄ ), rapidly 
decreasing with time and ∫ exp(−   ⁄ )∞   =   ⁄ . Replacing it by the step 
function   ( ) =  1,  ≤   ⁄0,  >   ⁄   , (12) 

to satisfy ∫ exp(−   ⁄ )    = ∫  ( )    , one will obtain  ( ) =−   ∫  ( −  )    ⁄ . Then, criterion (9) yields  

1  ⁄   ( )   
    ⁄ ≤   , (13) 

which coincides exactly with the incubation time criterion (4) if  =   ⁄ . This 
relation defines the incubation time as the characteristic time of relaxation 
processes. It should be kept in mind that the real relaxation is caused not only by 
viscous deformation, but mostly by microfracture, accompanying the rupture 



development. However, the microfracture accumulation in brittle material is 
described by equation having the form of eq. (10) [7, 8]. So, the incubation time 
has the physical meaning of characteristic time of relaxation processes caused by 
microfracture accumulation accompanying the macrofracture in solids. 
 

3. Continual-Temporal Approach 
We have revealed the fundamental role played by incubation time regarding to 
dynamic fracture processes. But incubation time criterion (4) allows an integral 
consideration of relaxation processes and does not provide a continual description 
of fracture evolution and corresponding incubation processes at the microscale. 
Here we would like to present the new kinetic description of dynamic fracture 
based on incubation time approach. It operates with a function corresponding to 
instant local microfracture state (the damage function) to describe the 
microfracture evolution (including the processes of nucleation, interaction and 
following coalescence of microfracture – microcracks, microdamage and so on). 
 
Let us consider a spatially isotropic process of microfracture evolution and fix an 
arbitrary small solid volume. Its mass is denoted as  , its volume before 
deformation is   , whereas the total volume of microfracture (damage) 
accumulated inside the chosen portion is  ∗. Thus, during the damage 
accumulation process its volume changes as  =   +  ∗. The change of volume 
is obviously accompanied by a variation of local density  ( ), described by the 
mass conservation law     ⁄ = − div  , where   is a local velocity of material 
particles. We can express the local density as  =     =           =       1 −   ∗   . 

Introducing the damage function  =   ∗   and setting   =       we obtain  =  (1 −  ). Substitution of this expression into the mass conservation law yields     = (1 −  ) div  . (14) 

It is clear that damage function   can takes the values from  ∈ (−∞ ,  1] and the 
local state of macroscopic fracture is referred to  = 1. Eq. (14) has the form of 
kinetic equation describing the creepage. Its right part represents the source of 
microfracture and, then, it has to depend on time indirectly, through the local 
force field and current damage level. It is natural to believe that fracture 
intensifies with increasing of damage level (in the most common form div  ~   (1 −  )  ,   ≥ 0,   ≤ 0). Besides that, fracture process has to be 
intensified with increasing of local stress. Formally, we could accept div  ~  ( ),  > 0, but such representation does not distinguish tensile and 
compressive stresses for non odd  . To correct it, we will suppose div  ~   ( ), 
where    ( ) = sign ( )   ( ). Then, we have to take into account the changing 
of stress field during incubation period which finally yields div  ~   ( ) −



   ( −  ). So, from dimensional analysis we will have (further  > 0 denotes a 
dimensionless proportionality constant)     = 1     ( ) −    ( −  )      (1 −  )    . (15) 

Here  ,   ,     and   are some dimensionless parameters which will be defined to 
obtain the known criteria in particular cases. Thus, let us consider the case when 
the force field near the rupture point fulfills the condition     ( ) =   ( ) ≥ 0. 
The initial condition corresponding to intact material is  (0) = 0 if the time 
“starts” in the moment of loading application, and the criterion of macrofracture is  ( ∗) = 1 if  ∗ is the time to fracture. Integration of eq. (15) on [0,  ∗] yields 

   ′ ′  (1 −  ′)     
 = 1     ( ′) −   ( ′ −  )   

 ∗
   ′. (16) 

The integrand in the left side of eq. (16) grows unboundedly when  ′ comes to 0 
(if   > 0) as well as when  ′ comes to 1 (if   = 0). So, the only possibility for 
the integral to converge is   = 0 and   < 0. From the other hand, considering 
the static loading  ≈ 0 (i.e.   ( ) −   ( −  ) ≈       ( )     ⁄ ) we obtain   (1 −  )    =          ( )   . (17) 

Integrating eq. (17) on [0,  ] (where  ≤  ∗) and taking into account the initial 
conditions  (0) = 0 and  (0) = 0 we have  1 −  ( )    − 1  = 1      ( ). (18) 

When  =  ∗, eq. (18) gives the fracture criterion in the form 

− 1  = 1      ( ∗). (19) 

Demanding the coincidence of obtained relation with the criterion of critical stress 
( ( ∗) =   ) we have to accept   = − . Now, integrating eq. (15) on [0,  ] 
(where  ≤  ≤  ∗) with initial condition  (0) = 0 and  (0) = 0 

1 −  1 −  ( )  = 1        ( ′)  ′ 
    (20) 



and taking into account that max  1 −  1 −  ( )   = 1 (it is reached when  = 1), we have to suppose  = 1 to obtain the incubation time criterion (4). 
Finally, we derive the explicit solution of eq. (20) as 

 ( ) = 1 −  1 − 1       ( ′)  ′ 
      ⁄ . (21) 

The physical meaning of parameter   is clarified by the form of solution (21) – it 
is the rate of damage accumulation under external loading and, as expected, it has 
to be defined by material constants. 
 
So, we have constructed the continual description of dynamic fracture based on 
incubation time approach. The corresponding equation has the form     = 1    ( ) −   ( −  )  (1 −  )   , (22) 

which solution, e.g. given by relation (21), describes the microfracture evolution 
during dynamic fracture process. Let us to emphasize one more time that obtained 
approach has the form of kinetic equation and it gives known fracture criteria in 
limit cases. It is very important fact allowing to stop the “eternal argument” 
between supporters of kinetical and critical approaches. In fact, both of them 
could be obtained on common basis as it was shown above. To demonstrate the 
abilities of proposed continual-temporal approach the solution of previously 
discussed classical cleavage problem is shown at Fig. 2 ( = 1 is assumed). 
 

  
 

Fig. 2. Changing of damage function with time for long and short loading pulses. 
 
 
The fracture will occur at the time moment  ∗ when the damage function attains 
the value  ( ∗) = 1. Let us note, that the “suppressed” zone (corresponding to the 
negative values of  ) appears at Fig. 2 because of compression wave going 
through the bar. Namely the accounting of time needed to form and following 



strain of this “suppressed” zone allows to define correctly the total time needed to 
fracture. So, the continual-temporal approach is able to give the proper 
description of microfracture evolution during dynamic fracture process. 

4.  Dynamic Crack Propagation Process 
The abilities of developed approach in simulation of dynamic crack initiation 
process are obvious. But to construct the model of dynamic crack propagation we 
have to use the technique discussed in [9]. Referring to that paper we can write 
the equation of propagating one-dimensional macrocrack as a nonlinear 
microfracture wave in the form     =  ( )      + 1    ( ,  ) −   ( ,  −  )  (1 −  )   , (23) 

where  ( ) is the relaxation factor – the rate of microfracture relaxation process 
anticipating the phenomenon of crack propagation [9]. To be convinced that 
eq. (23) is able to provide the description of microfracture wave propagation let us 
to consider the trivial example  =       and    ( ,  ) −   ( ,  −  ) (   )⁄ = =      . Introducing new dimensionless variables  =  √  ⁄  and  =   ⁄  
we will have     =       +  (1 −  )   . (24) 

It is easy to see that this equation admits the solutions in the form of a kink-type 
autowave. Indeed, eq. (24) is invariant with respect to translation by   and  . It 
means that after some time period the solution “forgets” the initial condition and 
goes in steady-state when the wave front remains the same with time and the front 
profiles are self-similar. Supposing that the wave front moves with constant 
velocity   from right to left and interesting in the autowave solution  = ( −   ), we can reduce eq. (24) to the ordinary differential equation:  

   +      = − (1 −  )   ,          where  ( ) =    ( −   ). (25) 

Accordingly, we have verified that, even in the considered trivial case, when 
stress field increases at the constant velocity, the equation (23) can be used to 
describe the propagation of macrocrack as a nonlinear microfracture wave. 

1. Conclusions 
Still the moment when the scientific community firstly faced with dynamic 
fracture problems it concentrated on definition of the critical strength properties 
as material functions by analogy with static case. Here we presented the 
alternative approach providing the reasonable description of many observed 
dynamic effects. Namely, the continual (kinetic) formulation of incubation time 



based fracture dynamics has been provided. It was shown that proposed approach 
describes the fracture evolution and corresponding incubation processes at the 
microscopic scale level simulating properly the cleavage phenomenon. The 
abilities of proposed approach in description of dynamic crack propagation 
process were also discussed. 
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