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We study transverse impacts of rigid objects on a free membrane. The thin elastic 
sheet is made of natural rubber. After impact, two distinct waves propagate in the 
sheet. First a tensile wave travels at the speed of sound leaving behind the wave 
front a stretched domain. Then a flexural wave propagates in the stretched area at 
a lower speed. In the stretched area geometrical confinement induces compressive 
circumferential stresses. They trigger a buckling instability giving rise to radial 
wrinkles. In this paper we report on an experimental and theoretical study of this 
dynamic wrinkling.
 
1 Introduction. 
When a thin sheet is transversely impacted, it is pulled out of its plane. The out of 
plane displacement is often accompanied with a rich radial pattern. Two examples 
are particularly striking: the radial cracks seen on impacted glass plates [1] and 
the wrinkles seen on the sides of a tablecloth [2]. To understand how such patterns 
appear on an initially  axisymmetric structure, it is important to understand the 
global response of the sheet. When a free standing thin elastic sheet is 
transversely impacted, the impactor drags material points out of the plane. This 
pulling action induces motion of the material points towards the center of the 
sheet [3, 4]. Thus compressive hoop  stresses develop in the membrane. As seen on 
Figs (3) and (4), these stresses induce a buckling instability  giving rise to radial 
wrinkles. In this work we study  this dynamic wrinkling instability.  First we 
discuss wave propagation in and on the membrane. Then we study  the stability  of 
the axisymmetric situation and we show that a wrinkling instability  develops. We 
propose a model that allows us to compute the wavelength of this instability. 

2 Experimental setup. 
We use a gas gun to launch projectiles on a free standing thin elastic sheet (Fig. 
1). Most of our experiments are performed with a steel cylindric impactor of 
radius ri = 2.25 mm and mass 3.3 10-3 kg. The speed of the impactor can be 
adjusted between 0 and 30 m/s. The latex sheet stands initially  on a netting 
stretched on an open frame.  The frame is maintained by two electromagnets. 
When the gas gun is triggered, the electromagnets are switched off, the frame is 
violently  pulled down by two rubber bands and the latex sheet falls under the 
action of gravity. The characteristic time of the free fall is much longer than any 
timescale in the problem and thus we consider that the impactor hits a stress free 
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membrane at rest. The sheets were cut from natural rubber with different 
thicknesses (from 0.10 mm to 0.30 mm). The outer radius of the sheets is r0 = 60 
mm. The latex Young’s modulus is E = 1.5 106 Pa and the sound speed in latex is 
c = 45 m/s. The typical timescale of the problem is r0/c = 1.3 10-3 s. We use a high 
speed camera to record the motion of the sheet after impact. 

3 Wave propagation. 
We now discuss our results and we also give an outline of the model that is 
detailed elsewhere [4]. Fig. 2i shows the motion of the material points on a 
meridian line after impact. Two waves can clearly be seen: 
1. A tensile wave travels at the speed of sound in the membrane. At time t, the  

wavefront is located at the radius rt = ri + ct where ri is the radius of the 
impactor. Behind the wavefront material points move towards the impact point. 
We use the following ansatz for the radial displacement of a material point 
initially located at r

(1)

This form corresponds to the quasi-static solution of the equation for the 
propagation of in plane disturbances in the membrane [5]. α is unknown but it 
will depend on the impactor’s speed V, and it  will be determined when 
matching this solution with the solution in the cone. The corresponding radial 
strain is

(2)

2. A transverse wave travels at  the speed of transverse disturbances in a 
membrane, namely U = (σr / ρ)1/2. Behind the transverse wavefront, the 
membrane takes the form of a cone (Fig. 3). As seen on Fig. 2i, the base of the 
cone travels at constant speed. The position of the transverse wavefront in the 
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Fig1: Experimental setup



3

material frame is rc = ri + Ut. We assume that the strain in the cone εc is 
uniform and is equal to the strain at r = rc as given by Eq. (2). 

To find the coefficient α, we need to match the two domains. Assuming that the 
strain in the cone is uniform and equal to  We use a simple geometric relation to 
compute the length of the meridian line between ri and rc namely we write 
Pythagoras’ theorem

(1+ εc)2r2
c(t) = (Vt)2 +(U∗t)2 (3)

where U* is the speed of the base of the cone in the laboratory frame (U*t = rc(t) + 
ζ(rc,t)). The speed of the impactor V does not change much during the experiment 
(see discussion) and we will assume that it is constant.  
We finally obtain in the limit Ut >> ri
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(4)
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(5)

This result and in particular the scaling U ∼ V1/2 shows good agreement with 
experimental data [4].
Using Hooke’s law, we obtain for the stresses in the stretched domain

σr(r, t) =
E
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(6)
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Fig 2: (i) Motion of the material points on a meridian line. (ii) In plane stress field in 
the membrane
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σr is always positive and thus the material is stretched in the radial direction. 
However for r < rz, with rz = [(1 - ν)/(1 + ν)]1/2 (ri + ct), the hoop stress σθ is 
negative and thus circumferential compression occurs (Fig. 2ii). Similar stress 
fields occur in static configuration when an annular membrane is held at two 
different radii [6]. A similar situation is also encountered in the punching of metal 
plates [7] and in liquids [8]. In the present example, the difference between the 
wave speeds of longitudinal and transverse perturbations allows the development 
of an area with negative hoop  stress. In a similar static situation, a circular 
membrane clamped at its outer radius, the flat stretched area does not exist. No 
wrinkling instability is observed in that case. 

4 Wrinkling instability
Thin sheets cannot withstand compressive stresses. When compressive stresses 
are present, the sheet buckles. In the experiment, we observe radial wrinkles (Fig. 
3 and 4) with a well defined wavelength in the stretched domain outside the cone. 
The number of wrinkles depends on the impactor’s speed V. We use a quasistatic 
approach to study the development of a non axisymmetric transverse mode: at 
each time t, we consider the annulus bounded by rc  and rz. We use the following 
ansatz for the transverse displacement 

ξ (r,θ , t) =
(r− rc)(r− rz)

(rz− rc)2 ξn sin(nθ)exp(γnt) (8)

The displacement is zero at rc  and rz. We use Rayleigh’s method to compute the 
growth rate γn of the displacement given by Eq. (8). The different energies are: the 
bending energy [4], the membrane energies associated with in plane stresses σr 
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Fig 3: Side view of the impact of a latex membrane by a cylindric impactor. The 
impactor’s speed is V= 3.7 m/s. The timestep between two frames is 0.50 ms. 
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and σθ and the kinetic energy. Minimizing with respect to ξn yields the dispersion 
relation and thus γn. At short times, all wavenumber n are stable and the γn are 
imaginary. At a critical time an instability occurs and γn becomes positive for a 
finite n. We use this critical wavenumber to obtain the critical wavelength λ = 
2πrc/n. It agrees with the wavelength of the radial pattern observed in the 
experiment (Fig. 5). It  is in general not possible to derive a simple formula for the 

selected wavelength. However a simple model in which the annulus is replaced by 
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Fig 4: Bottom view of the impact of a steel ball at speed V=5.2 m/s on a circular 
latex membrane. The timestep between each frame is 0.50 ms. 
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Fig 5: Wavelength of the wrinkle pattern. The solid line shows the result of the 
model. 
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a beam (as in [7]) predicts a wavelength λ ∝ h (V/c)-1/2. This scaling is also 
observed in experiments (Fig. 5). 

In our theory, the compressive hoop stress increases indefinitely  with time. Thus 
if the development of the stress field is not perturbed by the limited size of the 
membrane, the instability will occur. This is an important difference between this 
problem and similar static problems [6-8] where a threshold depending on 
boundary conditions can be determined. In the present case, the limitation due to 
size occurs when the tensile front rebounds on the boundaries. Otherwise, like in 
our experiment, the nature of the boundary does not influence the dynamics. In 
the theory we also neglect the deceleration of the impactor that occurs if its mass 
is small compared to the mass of the membrane. Also, the bending rigidity of the 
membrane that has been neglected in the computation of the stress field may 
modify  the dynamics for a thicker sheet such as a glass window. The link between 
the present work and the radial cracks pattern observed in fractured glass is still 
under investigation. 

5 Summary
We have studied the transverse impact at moderate speed of a rigid impactor on a 
free elastic sheet. Two different waves, a tensile wave and a transverse wave 
propagate in and on the sheet  at different speeds. In the area located between the 
two fronts, compressive hoop stresses induce a buckling instability that give rise 
to radial wrinkles. 
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