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Considering ice material as a metamorphic state of snow, the paper argues about 
the possible application of fractal geometry to describe the physical properties and 
the mechanical behaviour of ice. On the basis on the evidence of fractality, the 
formation of crevasses on the glaciers of the Italian Alps is analysed. Application 
of the box-counting method permits to analyse the distribution of crevasses 
network within the glacier continuum. Assuming the glacier as a damaged 
continuum, the application of Multifractal Scaling Law, originally developed for 
concrete-like materials [2], on the fracture energy and strength of ice is discussed. 
 
 
1. INTRODUCTION 
 
 
Glaciers represent one of the major indicators of past and present climate change 
of natural systems. But they can represent also the source of hydro-geological risk 
when collapse of seracs induces snow-ice-rock avalanches or when ice blocks 
felling may reach populated areas. Therefore, researchers and regional authorities 
need to know the physical state of glaciers in order to understand their evolution 
and dynamics, to correctly manage the mountain environment and forecast 
catastrophic events. 
The goal of our research is to describe the formation of ice fractures to understand 
the evolution of the internal stress state due to the dynamics of the ice mass. This 
information, coupled with a specific monitoring activity, will help to predict 
collapse events (i.e., ice falls and seracs collapse) from high-elevation glaciers. 
Like in the case of rocks, ice shows quasi-brittle behaviour and fractal patterns 
can be evidenced in the process of damage (i.e., fracture and faulting). Fractality 
usually induces scale effects on the mechanical parameters, in particular on 
fracture energy and strength [1]. 
Ice dynamic acts at geophysical scale, thus the paper presents the multifractal 
analysis of fracture networks on one Alpine Glacier of Aosta Valley - Italy.  
By means of the application of the box-counting method, the distribution of 
fractures within the glacier continuum can be analysed. We argue that the scaling 
behaviour of the fracture energy of ice can be correctly described by the Multi 
Fractal Scaling Law - MFSL [2]. 
The final goal is to use the fractal dimension of the crevasses network to evaluate 
the stress and strain state of glaciers, in order to forecast collapse events. 
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2. GLACIERS AND CREVASSES IN THE AOSTA VALLEY 
 
 
The dynamic of glaciers is mostly governed by gravity and ice metamorphism 
which induce different states of stress and strain influenced by the local geo-
morphology of the mountain slopes. 
When the stress overcomes the ice strength, ice fracturing starts and develops in 
different forms. A typical appearance of ice fracturing is represented by crevasses, 
each one generated by high tensile stress [3], influenced by the presence of 
adjacent ones and by their depth [4, 5]. As in the case of damage of quasi-brittle 
material (e.g., concrete), the direction of fracture propagation obeys to the 
principal tensile stress, i.e. approximately perpendicular to it. For a moving in a 
valley, glacier different stress states usually induce three kinds of crevasses [5]: 

a. shear stress exerted by valley walls only (with an inclination around 
45° with respect to the valley walls) - Fig. 1.a; 

b. shear stress and tensile flow (perpendicular with respect to the 
direction of ice flow) - Fig. 1.b; 

c. shear stress and compression flow (with an inclination close to or less 
than 45° with respect to the direction of flow) - Fig. 1.c. 

Thanks to the above simple classification, crevasses have usually been studied as 
simple cracks measuring their regular spacing [6, 7], arguing that a power law 
describes the scaling of their lengths [7] and after, analysing a population of 
crevasses on Argentière glacier – French Alps [1].  
 

 
 

   (a)      (b)    (c) 
 

Figure 1. Crevasses patterns in a valley glacier with corresponding stress state [5]. 
 
 
The Italian peninsula presents approximately 500 km2 of its total surface occupied 
by glaciers: 135 km2 are localized in Aosta Valley. Due to its geo-morphology 
(70% of the Valley has the elevation higher than 1500 m s.l.m. ), the glaciers 
cover about 4% of the total Valley surface (Fig. 2): 75% of the glacier area is 
contained in only 30 larger glaciers [8]. 
To investigate the fractal dimension of the crevasses network on glaciers, we have 
chosen the Cherillon glacier which, together with four other glaciers in the Valley, 
(Pré de Bar – Ferret Valley; Tzanteleina – Rhêmes Valley, Mont Gelé – 
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Valpelline and Verra Grande – Ayas Valley), is continuously monitored by the 
Cabina di Regia dei Ghiacciai Valdostani (a department of Fondazione Montagna 
Sicura). The Cherillon glacier is localized in Valtournenche, in the South-East 
sector of the Valley. It is placed between Mont Tabel and Lion Bas glacier, near 
the Mount Cervino (Fig. 3), not far from to the Breuil – Cervinia (AO) city centre. 
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Figure 2. Distribution of glaciers in the Aosta Valley: 25% on Mount Blanc, 18% 
on Mount Rosa, 18% on Gran Paradiso, 12% on Valpelline, 8% on La Thuile 
Valley, 8% on Valgrisenche [8]. 
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Figure 3. Localization of the Cherillon glacier - Valtournenche (AO) – Italy 
(Photo by Cabina di Regia Ghiacciai Valdostani - Fondazione Montagna Sicura). 
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As can be easily seen in Fig. 3, The Cherillon glacier represents a possible risk for 
the densely populated area of Breuil-Cervinia, where also a wide ski resort area 
occupies the northern slopes. For example, in 1931, “during the summer, a huge 
ice mass fell under the rock-step on which the glacier leans” 
(http://www.nimbus.it/glaciorisk/) [9]. Detachment and tilting of large ice masses 
may occur in the glaciers, and passive protection solutions (e.g. dams) are not 
feasible to avoid disasters.  
Therefore, a continuum monitoring activity is carried by the Cabina di Regia dei 
Ghiacciai Valdostani. The monitoring activity comprises several analysis [10]: 

a. analysis of snow accumulation: periodic survey of snow layers and of their 
physical and mechanical properties to measure snow melting, evolution 
and metamorphism to estimate the height of the snow permanent line and 
the ice mass balance;  

b. analysis of photos taken from a fixed points, to have a prompt visual 
knowledge of the morphological variations; 

c. analysis of the GPS survey of the front of the glacier, to determine its 
spatial variability during time. 

Moreover the Cherillon glacier has also been studied by Calmanti et al. [11], with 
the aim of studying its effects on global warming.  
Below the principal characteristics of this glacier are detailed (Table 1). 
 

Cherillon glacier 
Type Cirque glacier 
Latitude (°, cent) 45,98 N 
Longitude (°, cent) 7,6 E 
Surface [km2] 1,15 
Length [km] 2,2 
Maximum altitude [m] 3540 
Minimum altitude [m] 2595 
Glacier trend retreat 
Front shrinkage since 2004 to 2006 [m] 24 
Estimated glacier length [m] 1800 
Average slope [°] 19 

 
Table 1. Characteristics of the Cherillon glacier – Valle d’Aosta – Italy 
[http://www.nimbus.it/glaciorisk/]. 
 
 
3. FRACTAL ANALYSIS OF DAMAGE ON THE CHERILLON GLACIER 
 
 
To study the spatial distribution of damage on the glacier and to highlight its 
scaling properties, we have calculated the fractal dimension of the crevasses 
network on one of glaciers of the Italian Alps, by the box-counting method. 
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Among the various definitions of dimension of a fractal set, the Minkowski-
Bouligand is a special case of the Hausdorff-Besicovitch dimension and 
represents the best definition for numerical implementation. To obtain the fractal 
dimension of a certain domain, it is necessary to cover it by means of regular 
Euclidean sets (usually square or rectangular grids) with falling linear size. The 
fractal dimension is obtained by computing the logarithmic density of the measure 
of these coverings [12]. This is called the box-counting method and, as a result, it 
gives the box-dimension ∆  depending only on the metric characteristics of the set 
[13]. The mathematical definition of the box-dimension is given by: 
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where bi is the (progressively decreasing) linear size of the covering grid and Ni is 
the (progressively increasing) number of boxes that cover a part of the fracture 
network. 
The box-dimension can be calculated in a straightforward manner by considering 
the slope α of a linear regression in the logN vs. logb plot. In this case, the box-
dimension is equal to: 

α−=∆                 (2) 
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Figure 4. The Cherillon glacier: (a) Aerial image; (b) Crevasses network skeleton 
on glacier surface. 
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In the presence of self-affine scaling (as is the case of simple profile rouhness), 
this value depends on the shape of the covering grids. Generally, natural fractals 
do not exhibit an univocal value of the slope (mono-fractality), but show a 
geometric multi-fractality [14] with a continuous variation of the α parameter 
(some authors define this scaling behaviour as self-affinity). This behaviour is 
caused by the presence of two transition scales of phenomenon [15]. In particular, 
when the object is a digitalised image (i.e., a discrete set of pixels), it is necessary 
to define the lower limit of scaling to avoid to consider the external cut-off length 
of the object [15]. From this the lower limit of the scaling must be clearly defined. 
In order to study the patterns of fracture networks on glacier, we have used a 
general-purpose version of the method originally developed for the fractal 
analysis of 2D lattices [16].  
From the aero-photogrammetric view and the geo–referenced images of the 
Cherillon glacier (Figs. 3 and 4.a), the map of fracture networks on the ice surface 
can be outlined by image analysis, i.e. by skeletonising the areas corresponding to 
the crevasses (paying attention to eliminating shadows due to ice hills and valley) 
(Fig. 4.b). The box-counting method is then applied to this 2D pattern of fractures 
with dimension [1772 x 1024 pixels], by varying the linear size b of the square or 
rectangular grids (Figs. 5.a, 5.b, 5.c and 5.d). The ice fracture patterns on the 
Cherillon glacier possess a box-dimension ∆ closed to 1.6. 
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Figure 5. Application of the Box-Counting Method to the patterns of ice fractures: 
a) and b) square grids; c) and d) rectangular grids with different linear size b (the 
larger size of the rectangle is vertical and horizontal, respectively). 
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We note that varying the maximum dimension of square elements grids from 400 
to 1000 pixels (respectively, Fig 5.a and Fig. 5.b), the box-dimension does not 
change. However the use of square grids (isotropic scaling implies the self-
similarity of the network) could be in contrast with possible self-affine properties 
of fracture networks on ice.  
To check this, rectangular grids have also been used to capture the possible 
direction-dependent scaling, adopting iterative rescaling as a function of the grid 
direction [16]. Fig. 5.c and 5.d show the box-counting dimension of the Cherillon 
glacier calculated by rectangular grids (vertical/horizontal ratio equal to 2 and 0,5, 
respectively). The box-dimension, calculated according to a self-affine grid, 
results again equal to ∆ = 1.6. 
This means that the network of fractures on the glacier possesses self-similar 
fractal properties. From the mechanical point of view, this implies that the three 
prevailing stress rupture mechanisms are all active within the ice continuum, due 
to the particular geo-morphological shape of the valley. 
 
 
4. CONCLUSIONS: MULTIFRACTAL SCALING OF STRENGTH AND 

TOUGHNESS 
 
 
It is well know that some typical phenomena on the strength of materials are only 
the macroscopic results of the structural disorder. Also in ice mechanics, the 
investigation confirms that fracturing on glaciers surfaces shows a self-similar 
behaviour and induces a the invasive fractality  (∆ > 1) of the crack networks. 
This means that ice behaves as fragile material at small scales (∆ ≈ 1 with regular 
brittle fractures single paths) whereas becomes more ductile at large scales (∆ ≅ 
1.6, with a dense fracture network on the ice surface) with a distributed damage 
and an increase of toughness.  
 
 

 
 

     (a)      (b) 
 

Figure 6. Multifractal scaling laws for the critical parameters GF and σu [2]. 
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As a consequence of the fractality of the domain of the fracture, the Multi Fractal 
Scaling Law - MFSL – [2] can be applied in ice mechanics to explain the decrease 
of ultimate tensile strength σu and the increase of toughness GF, as the scale of the 
specimen increases (Fig. 6 where GF

∞ and ft are the asymptotical values of the 
nominal quantities corresponding to the highest nominal fracture energy and to 
the lowest nominal tensile strength). 
A further confirmation of the above mentioned scaling of the mechanical 
properties of ice can be obtained by comparing the data obtained at the small 
laboratory scale, by Dempsey et al. [17, 18, 19] on marine and freshwater ice, and 
the phenomenology of fracture evidences at the very large scale of Antarctic sea 
icebergs (see Fig. 7). In the Figure, two subsequent Envisat ASAR images taken 
on January and April 2005 show the steady progress of the massive B15-A 
iceberg (115 km long) towards the Drygalski ice tongue. The impact provoked a 
crack of 5 km length in the ice tongue. 
 
 

 
 

     (a)      (b) 
 

Figure 7. Two subsequent Envisat ASAR images of the B15-A iceberg and the 
Drygalski ice tongue: a) on January 2005; b) on 15 April 2005. 
 
 
The analysis of the impact permits to highlight the dramatic fall of ice strength at 
the scale considered where the toughness, according to the MFSL depicted in Fig. 
6.a, has already reached the asymptotic plateau. 
In conclusion, the study of the scaling in ice mechanics can provide useful 
indications not only for the risk assessment of serac falls in mountain glaciers, but 
also in the case of iceberg impacts on offshore structures, for ice-breaking ships 
and in the Artic and Antarctic exploration and mining activities. 
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