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1 Introduction

Future generations of mobile electronic devices will contain flexible, bendable or
even rollable displays. An example of such a device, which is already entering the
market, is the Readius by Polymer Vision – see Figure 1(a). Apart from provid-
ing a range of exciting new options for designers, the introduction of ultra-flexible
displays also presents a number of mechanical challenges to engineers, as the de-
vices’ reliability must be guaranteed despite the additional mechanical loading due
to repeated bending and unbending.

(a) (b) 2b

Figure 1: (a) Readius by Polymer Vision, containing a rollable display; (b) sketch
of buckling–delamination in the stack of layers forming the display, where 2b is the
width of the buckle and delamination zone.

In mechanical terms, the displays produced by Polymer Vision essentially consist of
two polymer substrates which sandwich an extremely compliant active layer. The
substrates each have a thickness of approximately 25µm and an elasticity modulus
on the order of a few GPa. The active layer is approximately 50 µm thick; its
mechanical properties are not very well known, but its elastic modulus is certainly
several orders of magnitude lower than that of the substrates.

Upon rolling, the inner substrate experiences a compressive stress. In one of the
failure modes observed during prolonged and intensive testing, the substrate in
compression buckles and simultaneously loses its adhesion to the soft intermediate
layer (Figure 1(b)). This so-called buckling-driven delamination obviously com-
promises the integrity and functionality of the device.
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The mechanics of buckling-driven delamination are well understood for films on
stiff or thick substrates – see for instance the review by Hutchinson and Suo [1].
However, studies of films on compliant substrates have shown that the energy avail-
able for buckle formation in them may be significantly larger than predicted by the
conventional theory [2–5].

Our objective is to predict the onset of buckling–delamination, as well as the prop-
agation of the ensuing buckles, for thin laminates such as the rollable display of
Figure 1. In particular, we are interested in predicting the influence of the relative
stiffness and thickness of the compliant intermediate layer as compared to the top
and bottom substrates.

Our analysis essentially follows that of Yu and Hutchinson [3]. Contrary to the
semi-infinite substrates considered by these authors, however, we focus on thin
substrates – of the same order of magnitude as the film – which are furthermore
laminated. In the analysis, some simplifications are made with respect to that of
Ref. [3], which we demonstrate to be justified by comparing predictions with full
finite element simulations. Details of the analysis and further results are reported
in a forthcoming publication [6].

2 Analysis

The problem which we consider is that of a straight buckle which is formed in
the top layer of a three-layer planar laminate – see Figure 2(a). A compressive
stress is introduced in the top layer by imposing a uniaxial thermal expansion in
the direction of the x-coordinate. The resulting internal stress is characterised by
the compressive mechanical strain away from the buckle, ε. Note that the thermal
load is employed solely to introduce a state of stress which mimics that due to
rolling of the display. The entire stack of materials is assumed to deform in a plane-
strain mode. The top and bottom layer have the same thickness, h, and elastic
properties, characterised by the plane-strain modulus Ē . The intermediate layer has
thickness h′ and a plane-strain modulus Ē ′. We characterise the stiffness contrast
by Dundurs’s elastic mismatch parameter

α =
Ē − Ē ′

Ē + Ē ′
(1)

and are interested mostly in the case where 0 < α < 1, i.e. Ē ′ < Ē .

Following Yu and Hutchinson [3], we regard the delaminated and buckled part of
the top layer, of width 2b, as a plate in bending (Figure 2(b)). For the systems
considered by us, however, it turns out that it is a reasonable assumption to de-
couple the compressive response and bending response of the plate. Instead of the
von Kármán plate theory employed in [3], this allows us to use the standard Euler

2



y

xz

P

M

P c

M

M

P

M

MM

F

Ehε Ehε

c

(a)

(b)

(c)

(d)

(e)

ε

ε
ε

ε

ε

FP

Figure 2: Decomposition of the buckling problem into subproblems: (a) full prob-
lem; (b) buckling of a compressed plate; (c) support of the plate, which can be
further subdivided into (d) a uniform solution and (e) a correction to the uniform
problem.

theory for buckling. The compressive strain in the buckle is constant and is assumed
to remain equal to the strain at the onset of buckling, the critical buckle strain εc.

The main challenge of the analysis lies in characterising the boundary conditions
of the plate used for the buckling analysis. Classically, a double-clamped condition
is employed. However, the compliant intermediate layer in our system allows a
significant amount of translation and rotation at the ends of the buckle. This com-
pliance is governed by the remaining part of the three-layer system as sketched in
Figure 2(c). The deformation and stress state in this remaining part can be subdi-
vided into a uniform solution which corresponds to the unbuckled, but internally
stressed state (Figure 2(d)) and a part which captures the additional deformation
and stress due to the translation and rotation of the buckled layer (Figure 2(e)).
The first subproblem requires a force per unit length Ēhε at the interface with the
buckle, so that for the second we have a force F = P− Ēhε and moment M , where
P and M are the force and moment acting on the buckle (Figure 2(b)).

Again following Yu and Hutchinson [3], the response of the remaining system as
sketched in Figure 2(e) is characterised by

u = a11
F
Ē
+ a12

M
Ēh

(2)

ϕ = a21
F

Ēh
+ a22

M
Ēh2

(3)
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where u and ϕ are the displacement and rotation of the interface with the buckle
respectively. The constants a11, a12 = a21 and a22 have been computed for a range
of relative buckle widths b/h, intermediate layer thicknesses h′/h and stiffness
contrasts α using the finite element model as sketched in Figure 3. In this model,
the buckle has been replaced by a rigid body, to which a reference force F and
moment M are successively applied in order to compute the coefficients ai j . A
similar model which also includes the buckle has been used to numerically generate
reference solutions.
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Figure 3: Finite element model used to compute the boundary compliance coeffi-
cients ai j featuring in Equations (2)–(3).

Figure 4 shows the values computed for a11 and a22 using the finite element model
as a function of b/h and for stiffness contrasts α ranging from 0.5 to 0.99. The
ratio b/h has been varied by changing the (semi-)buckle width b at constant h and
α by changing Ē ′ at constant Ē . The data reported in the figure is for a intermediate
layer thickness of h′ = 2h, which is realistic (see Section 1). The computed a12
(not shown here) turn out to be substantially smaller than a11 and a22, allowing us
to neglect the coupling terms in (2)–(3).

As in the results obtained by Yu and Hutchinson [3] for a semi-infinite substrate,
the coefficient a22 does not vary appreciably with b/h (Figure 4(b)). The influence
of the stiffness contrast α is intuitive: a more compliant intermediate layer (i.e. a
higher α) results in more rotation of the buckle ends (higher a22).

The influence of α on the translational compliance a11 is similar to that on a22
(Figure 4(a)). However, here we observe a clear influence of the buckle width b,
which appears to be virtually linear. This can be understood by realising that upon
formation of the buckle, the relatively thin intermediate and bottom layers below
it can largely relax along the entire width of the buckle. These two layers thus act
as a spring, the compliance of which scales linearly with b. Note that this effect
is absent for the semi-infinite substrate considered by Yu and Hutchinson [3], in
which the response must become uniform for y →−∞.
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Figure 4: Computed boundary compliance coefficients (a) a11 and (b) a22 as a
function of the normalised buckle width b/h for h′ = 2h and various values of the
stiffness contrast α.

An interesting observation can be made by correcting the translational compliance
a11 for the relaxation mechanism as discussed above. To this end, define a local
translational compliance coefficient ã11 as follows:

ã11 = a11 −

(
1+

1− α
1+ α

h′

h

)−1 b
h

(4)

The second term in this expression represents the compliance associated with the
intermediate and bottom layers below the buckle; it can be derived in a straightfor-
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ward fashion from the elastic stiffness of the two layers in parallel and expressing it
in terms of the stiffness contrast α. Applying this relation to the data of Figure 4(a)
results in the diagram of Figure 5(a). It shows that, like a22, the coefficient ã11 is
independent of b/h.

The remaining constants characterising the buckle’s boundary conditions, ã11 and
a22, have been plotted on a double-logarithmic scale in Figure 5(b). Apart from the
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ã 1
1

[-
]

(b)
10 0 10 1 10 2 10 3

10 1

10 2

a 2
2

[-
]
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Figure 5: (a) Local translational compliance coefficient ã11 obtained from rela-
tion (4). (b) Rotational compliance a22 vs local translational compliance ã11 for a
range of relative layer thicknesses and stiffness contrasts; the dashed line indicates
a possible square-root dependence.
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data of Figures 4(b) and 5(a), also values obtained for other thickness ratios h′/h
are included in the diagram. The data clearly suggests a direct relationship between
the two coefficients, which appears to be described quite closely by a22 ∝

√
ã11, as

evidenced by the dashed line of slope 1/2 in the diagram. Efforts to further clarify
this relation and to make a connection with the properties of the respective layers
of the laminate are in progress.

Now that the compliance coefficients a11 and a22 have been determined, we can turn
our attention to predicting the onset of buckling and the ensuing buckle shape. For
this purpose consider the buckled part of the top layer as sketched in Figure 2(a).
Its deflection w(x) must satisfy the differential equation

1
12 Ēh3 d2w

dx2 + Pw = M (5)

Solving this equation for w(x), using the symmetry condition dw/dx |x=0 = 0 and
w(b) = 0, results in

w = ŵ

(
1−

cos πx
λ

cos πb
λ

)
(6)

where

ŵ = w(0) =
M
P

and λ = 1
2πh

√
Ēh
3P

(7)

The unknown λ may be obtained by setting the rotation at x = b as given by the
derivative of (6) equal to the angle ϕ according to (3). After some algebra this
results in the following equation for λ:

λ

b
tan

πb
λ
= −

1
12πa22

h
b

(8)

This equation cannot be solved in closed form, but a reasonably accurate approxi-
mation can be obtained by a first-order Taylor expansion of tanπb/λ around λ/b =
1; this results in

λ = 1
2b

(
1+

√
1+ 1

3a22
h
b

)
(9)

The critical buckling strain εc follows from the assumption that P = Ēhεc as

εc =
1
12π

2 h2

λ2 (10)

Note that for a rigid substrate, for which a22 = 0 and thus λ = b, we recover
the classical result which for further reference we denote ε∗. Since for compliant
supports (a22 > 0) we have λ > b, expression (10) predicts buckling to occur
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earlier (at a smaller applied strain) than the buckling strain ε∗ obtained for a rigid
substrate – as would be expected for compliant boundary conditions.

The buckle height ŵ is obtained via the usual arguments and reads

ŵ =
4
π

b

√(
1+ a11

h
b

)
(ε − εc) (11)

Note that the compliance of the buckle’s supports enters this expression via a11 as
well as via the critical buckle strain εc, which via (9) and (10) depends on a22. Set-
ting a11 = a22 = 0 again results in the classical expression for a rigidly supported
buckle. Compared with it, relation (11) predicts a higher buckle at the same applied
strain ε.

Now that the buckled solution is available, we can also determine the energy release
rate associated with steady-state propagation of the buckle, Gss. It is this value,
relative to the toughness of the interface between the top and intermediate layers,
which determines whether a straight buckle will grow longitudinally – see e.g. [1].
For the system considered here it can be estimated as [6]

Gss =
1
2 Ēh

(
1+ a11

h
b

)
(ε − εc)

2 (12)

Note again the influence of compliance in this expression; for a11 = a22 = 0 the
result for a rigid substrate is retrieved – e.g. [1].

3 Preliminary results

Preliminary results of the semi-analytical model as discussed above are presented
in Figure 6. It shows the buckle height ŵ (Figure 6(a)) and the steady-state energy
release rate Gss (Figure 6(b)) as a function of the applied strain ε and for a range
of stiffness contrasts α. A relative buckle width of b/h = 16 and intermediate
layer thickness of h′/h = 2 have been used; see Reference [6] for a study on
the influence of these parameters and further results. Predictions made by the semi-
analytical model, given as solid curves, are compared with data obtained from finite
element simulations of the full buckling problem (dotted curves). The well-known
analytical results for a rigid substrate (or α = −1) are indicated as dashed curves.
The axes of both diagrams have been made dimensionless using the classical critical
buckling strain (for rigid substrates) ε∗, the top layer thickness h and the reference
energy G0 =

1
2 Ēhε2; the latter represents the maximum amount of energy which

can be released from solely the top layer over a width 2b.

Figure 6(a) shows that for compliant intermediate layers buckling indeed occurs
at strain levels which are lower than the classical limit ε/ε∗ = 1. This trend is
slightly underestimated by the semi-analytical model compared to the finite element
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Figure 6: Results obtained with the semi-analytical model (solid curves) as com-
pared to full finite element simulations (dotted curves): (a) normalised buckle
height and (b) normalised steady-state energy release rate vs normalised applied
strain for b = 16h, h′ = 2h and various levels of stiffness contrast. The dashed
curves represent the classical solution for a rigid substrate (α = −1).

simulations. The increase of the buckle height as the applied strain is increased is
captured rather well by the semi-analytical model. The buckle heights reached
are dramatically higher for compliant intermediate layers than for the rigid support
implied by the analytical solution (dashed curve).
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A similar effect is observed for the energy release rate Gss in Figure 6(b). The
energy released upon buckle propagation is substantially higher for systems with
a more compliant intermediate layer. Note that the fact that Gss/G0 > 1 for such
systems indicates that a significant amount of energy is released from the bottom
layer, as well as from the top layer beyond the buckle width 2b. The freedom intro-
duced by a compliant intermediate layer allows a larger region around the buckle
to relax and thus release energy. This trend is picked up well by the semi-analytical
model, as evidenced by the small difference with the finite element results.

4 Concluding remarks

The results of the previous section demonstrate that predictions made by the con-
ventional buckling–delamination theory are grossly inaccurate for laminates which
contain compliant layers. Compared with the semi-infinite compliant substrate con-
sidered by Yu and Hutchinson [3], additional mechanisms come into play for the
thin structure considered here. In particular, the layers below the buckle can relax
more freely than in the semi-infinite case and thus contribute more to the driving
force for buckle propagation, the steady-state energy release rate.

Apart from the energy release rate for steady-state propagation, the release rate as-
sociated with an increase of the buckle width can also be extracted from the present
analysis. This allows one to study the competition between buckle growth in longi-
tudinal and lateral direction, and thus to determine the natural width of buckles in
a given system – see the discussion by Yu and Hutchinson [3] and, for results for
thin laminates, Kleijne et al. [6].
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