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1. Introduction 
 
Piezoelectric materials are widely used as sensors, transducers and actuators 
because of their excellent electromechanical coupling effect. Due to the 
advantages of traditional functionally graded materials (FGMs) in reducing 
residual and thermal stresses [1-2], the concept of FGMs has been introduced into 
piezoelectric materials. These kinds of new materials are called functionally 
graded piezoelectric materials (FGPMs), which possess continuous variation in 
composition and properties. The application of new FGPMs in electromechanical 
devices is expected to have advantages over the traditionally used homogeneous 
piezoelectric materials in meeting high demands for their lifetime and reliability. 
For example, the usage of FGPMs replacing layered piezoelectric components in 
electromechanical devices, such as bimorph, may avoid failure caused by 
interfacial debonding or stress concentration [3]. However, the commonly used 
piezoelectric materials are generally brittle in nature and have tendency to 
developing cracks during manufacturing and service processes. The existence of 
cracks may cause the constructive failure of the electromechanical systems. 
Moreover, these electromechanical systems made of piezoelectric materials are 
often being used or considered for using in the situations involving dynamic 
loading, thus the dynamic fracture analysis of FGPMs is of great importance in 
maintaining the mechanical integrity of these systems.  
 
A critical issue involved in the fracture analysis of FGPMs is the electric 
boundary condition along crack surfaces. Most existing studies are limited to 
using electrically permeable [4] and impermeable [5] crack models. However, 
these two traditional models are not reasonable in some cases, according to some 
researchers [6-10]. As pointed out by Chiang and Weng [11], the dielectric 
permittivity of the crack medium will play a crucial role in Mode I crack. 
Therefore, it is essential to introducing the dielectric permittivity into the electric 
boundary conditions under tensile loading conditions. Considering dielectric 
medium effect, the fracture behaviour of homogeneous piezoelectric materials has 
been studied by some researchers [12-15]. Jiang [16] first attempted to use this 
dielectric crack model to investigate static problem of a crack in FGPMs.  
 
In this work, we provide a theoretical study on the dynamic fracture behaviour of 
a propagating crack in FGPMs using dielectric crack model. The effect of 
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material gradient, crack propagating speed and dielectric medium inside the crack 
upon the dynamic fracture behaviour will be demonstrated. A critical state of the 
electromechanical loading applied to the medium is observed, which determines 
whether the traditional impermeable (or permeable) crack model serves as the 
upper or lower bound for the dielectric crack model. The methodology developed 
for the fracture analysis of FGPMs is also extended to study the problem of an 
interfacial crack between two dissimilar piezoelectric media, in which the 
interface is modeled as a layer with continuously varying material properties. 
Numerical simulations are given to show the effect of the interfacial layer 
parameters, such as, thickness of the interfacial layer and crack position upon the 
transition among different crack models.  

      2. Formulation and General Solutions of Crack in FGPMs 
 

The problem envisaged is a plane strain problem of a finite crack moving at a 
constant speed V in an infinite functionally graded piezoelectric medium, which 
is subjected to external applied tensile  stress 0

22σ  and electric displacement 0
2D . 

The original problem can be considered as a superposition of a uniform one and 
another one with crack surfaces subjected to electromechanical loading. Since the 
first one is trivial, we will focus on the second one as shown in Fig. 1a. The crack 
length is 2a  and situates in the center, and there exists an electric potential drop 
across crack surfaces due to the crack deformation caused by applied loading.  In 
addition to the fixed Cartesian coordinate system 1 2( , )x x ,  a moving coordinate 
system 1 2( , )ξ ξ  is attached to the crack center to describe the crack propagation. 
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Fig. 1 Crack model 

2.1 Governing equations 
 
In the absence of body forces and free charges, the electromechanical behaviour 
of piezoelectric materials is governed by the equilibrium equations and Gauss law, 
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and the constitutive equations, 
,ij ijrs rs rij r i irs rs ij jc e E D e є Eσ ε ε= − = +                               (2) 

where , ,c e є are elastic, piezoelectric and dielectric coefficients matrix, 
respectively. ijσ  and iD  are stress and electric displacement components, ijє  and 

iE are strains and electric field intensity defined as, 
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with iu and Φ being the displacements and electric potential. 
 
The material constants , ,c e є  and the density of mass ρ may have arbitrary 
variation for FGPMs. However, to make the problem more mathematically 
tractable, it is assumed that they have the same exponential variation, for example, 

2 2 2 20 0 0 0, , ,x x x xe e e eα α α αρ ρ= = = =c c e e є є                         (4) 
where α represents the gradient of the material properties,  0 0 0, ,c e є and  0ρ are 
the material constants at the position of the crack line with, 
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After introducing Galilean transformation, 
1 1 2 2,x Vt xξ ξ= − =                                           (6)   

the equations governing the electromechanical behaviour of FGPMs are 
derived as,                                
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      2.2 Boundary Conditions 
 

In this work, we only consider the cases where a tensile mechanical loading and 
an electric loading are applied to the piezoelectric medium. Under this situation, 



the crack will open up and the dielectric medium will play a significant role in the 
fracture behaviour of FGPMs. Therefore, a dielectric crack model is used, the 
mechanical and electric boundary conditions along crack surfaces ( 1| | aξ < ) are,  
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2 2 2 2 2 2 2 2 0, ,e e

i i i D D D D D є
v v
Φ Φσ σ σ

+ −
+ − + −

+ −

−
= = − = = − = +

−
                   (10) 

where 12
0 8.85 10 CV/mє −= × is the dielectric permittivity of air (or vacuum) 

filling the crack. v v+ −−  is the crack opening displacement caused by the applied 
loading. From Eq. (10), we may consider the effect of dielectric medium as 
introducing an extra electric displacement into the effective electric displacement 

2
eD  imposing on the crack surfaces, which is caused by the crack deformation. It 

indicates that this crack model is nonlinear and deformation-dependent. When 
0 0є =  or 0є = ∞ , this model reduces to the traditionally impermeable and 

permeable crack models.  
 
2.3 General Solutions 
 
After using Fourier transform with respect to 1ξ , the general solutions of * *,u v  
and *Φ satisfying the regularity conditions at infinity can be written as, 
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with * representing Fourier transform.  iC  are unknown coefficients to be 
determined from boundary conditions, ia and ib  are known coefficients in terms of 

iλ  and materials properties. iλ  are  roots of the equation
7
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material properties and crack speed. Within the crack propagation speed range 
considered in this work, three of them 1 3 5( , , )λ λ λ having positive real parts and 
the other three 2 4 6( , , )λ λ λ  having negative real parts. 
 
As a mathematical model, a crack can be modeled as distributed dislocations. The 
generalized dislocation density functions are defined in terms of the jump of 
displacements and electric potential,  

1 1 1 1
1

( ) ( ,0 ) ( ,0 )u uψ ξ ξ ξ
ξ

+ −∂ ⎡ ⎤= −⎣ ⎦∂
,        2 1 1 1

1

( ) ( ,0 ) ( ,0 )v vψ ξ ξ ξ
ξ

+ −∂ ⎡ ⎤= −⎣ ⎦∂
, 



3 1 1 1
1

( ) ( ,0 ) ( ,0 )ψ ξ Φ ξ Φ ξ
ξ

+ −∂ ⎡ ⎤= −⎣ ⎦∂
                                                                    (12) 

Then the stress and electric displacement field can be expressed in terms of the 
generalized dislocation density functions as, 
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material properties and crack speed. The asymptotic analysis of ijh  indicates that 
these functions have the following properties, 
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Separating the singular parts of the kernels in Eq.(13) and substituting these 
equations into electromechanical boundary conditions (10) results in singular 
integral equations. These singular integral equations can be solved by expanding 
generalized dislocation density functions in terms of Chebyshev polynomials, 
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The resulting algebraic equations of electromechanical boundary conditions are 
numerically solved to determine the unknown jkC by using collocation method. 
After jkC  are solved, the electromechanical fields of stress, electric displacement, 
displacement and electric potential are determined. Based on stress and electric 
displacement fields, fracture parameters, such as stress intensity factors ,I IIK K , 
electric displacement intensity factor DK  at the right tip of crack can be 
determined in terms of jkC .  
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From work of Dascalu [17], the dynamic energy release rate of cracked 
piezoelectric medium can be derived in terms of the stress and electric 
displacement intensity factors as,  
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     3. Interfacial Crack between Two Dissimilar Piezoelectric Media  
 

The methodology developed in the previous section can be extended to study the 
interfacial crack between two dissimilar piezoelectric components as seen in Fig. 
1b. To eliminate the oscillatory stress singularity at crack tips, the interface is 
modeled as a layer of piezoelectric medium with continuously varying material 
properties 2 2( )C x ,  which approach those of the upper plane 2 1x h> and lower 
plane 2 2x h< −  as 1C and 3C , respectively. The layer thickness is assumed as h , 
and the crack position is described by 1h and 2h . Following the same procedure as 
in the previous section and using the continuity condition along bonded surfaces, 
the electromechanical fields for this interfacial crack problem can be derived to 
study the fracture behaviour. Within the crack speed range considered in this 
work, the treatment of interfacial layer model leads to the square root singularity 
in the stress and electric displacement fields at crack tips.  
 

      4. Results and Discussions 
 

In numerical calculations, the material constants 0 0,c e and 0є in Eq. (5) are taken 
as those of the PZT-4 ceramics for simulations. Firstly, we will pay attention to 
the effect of material gradient and crack speed upon the fracture behaviour when 
the medium is subjected to a tensile loading 0

22 30MPaσ = and an electric 
displacement 0 3 2

2 1 10 C/mD −= × . Fig. 2 shows the normalized stress intensity 
factor 0( / )I I I Ik k K K=  versus materials gradient, where 0

IK  is the stress intensity 
factor calculated when material gradient 0α = and crack propagation speed 0V = . 
It can be seen that Ik increases with the increase ofα for both static and dynamic 
cases. With the increase of /V c 0 0 2 0 0 1/ 2

22 22 22( [( ( ) / ) / ] )c c e є ρ= + , Ik also increases, 
but 1Ik =  for homogeneous piezoelectric medium. This result is consistent with 
Yoffe’s type crack in elastic materials. Due to the unsymmetry of material 
properties, there exists a coupling of crack opening mode and sliding model, 
which results in a nonvanishing IIK .  Fig. 3 shows the effect of the material 
gradient on normalized stress intensity factor 0( / )II II II Ik k K K= , it is observed 
that material gradient has a significant effect on IIk  for both static and dynamic 
cases. For example, even for the static case / 0V c = , the normalized intensity 
factor IIk  is about 0.26 when 1=aα . It is obvious from this figure that the crack 
propagating speed will enhance the coupling between opening and sliding modes. 
 
The effect of material gradient upon electric displacement intensity factor 

0( / )D D D Dk k K K=  is depicted in Fig 4, where 0
DK is calculated when 0α = and 

0V = . Similar phenomenon as in Fig 2 can be observed, however, 1Dk ≠  even 
for the dynamic problem of homogeneous piezoelectric medium. The variation of 



the normalized dynamic energy release rate 0( / )g g G G= versus material 
gradient is shown in Fig. 5, where 0G is calculated when 0α = and 0V = . The 
material gradient effect on this parameter is obvious. From all these figures, we 
can see that all these fracture parameters change dramatically when crack speed is 
high, for example, / 0.4V c = , which may indicate the possible mode change at 
high crack speed.  
 

 
                        Fig. 2 Variation of the normalized Ik                                     Fig. 3 Variation of the normalized IIk  

                        under electromechanical loading                                             under electromechanical loading 

                          Fig. 4 Variation of the normalized Dk                                   Fig.5 Variation of the normalized g  

                           under electromechanical loading                                             under electromechanical loading 
 
It is interesting to mention that the effect of dielectric medium inside the crack is 
the introduction of an extra term in effective electric displacement 2

eD as shown 
by Eq. (10). This effective electric displacement versus applied stress for different 
crack models is plotted in Fig. 6 with applied electric displacement 

0 3 2
2 4 10 C/mD −= × when / 0V c = and / 0.2V c =  for both homogeneous ( 0aα = ) 

and nonhomogeneous piezoelectric materials ( 0.4aα = for example). Similar to 
the static problem in homogeneous cracked piezoelectric medium [11], there 
exists a critical state 0

22 2( , )c Dσ  for applied electromechanical loading. For fixed 



applied electric loading 0
2D , when the applied stress 0

22σ < 22
cσ , the response of an 

impermeable and permeable cracks serves as the upper and lower bound 
respectively. However, when 0

22σ > 22
cσ , the situation is completely reversed. It 

demonstrates in this figure that this critical state for electromechanical loading 
will change with crack speed and material gradient.  
 
To see if there exists such a critical value for 22

cσ  for the interface crack in two 
dissimilar piezoelectric materials, the variation of effective electric displacement 

2
eD  with applied tensile stress 0

22σ under applied electric displacement  
0 3 2
2 5 10 C/mD −= ×  is plotted in Fig. 7. In this case, the material constants for 

lower piezoelectric medium are taken as those of the PZT-4 ceramics and material 
mismatch is set to be 3 1/ 1/ 5C C = . It demonstrates from this figure that there 
does exist such a critical value 22

cσ , and the interfacial layer model parameters, 
such as interfacial layer thickness and crack position 1( / )h h , has a significant 
effect upon this critical state for electromechanical loading. From Fig. 6 and Fig. 
7, we can see that the results for the dielectric crack model are always between 
traditionally impermeable and permeable crack models. Therefore, this dielectric 
crack model might be more accurate to predict the dynamic fracture behaviour of 
cracked FGPMs for some cases. The transition among different crack models is 
obvious depending on the applied electromechanical loadings. 

 
 

              Fig.6 Variation of effective electric displacement                      Fig.7 Variation of effective electric displacement  
               with the applied stress for different models                                with the applied stress for interface crack 
 

      5. Conclusion 
 
This work provides a theoretical study on a finite moving crack in FGPMs 
subjected to inplane electromechanical loading. Numerical results show that the 
material gradient and crack speed have great influence on the fracture behaviour 
of cracked FGPMs. Investigation on the effect of dielectric medium filling the 
crack upon the dynamic fracture behaviour of FGPMs indicates that dielectric 
crack model may be more accurate for the fracture analysis of FGPMs. A critical 
state of electromechanical loading exists, which determines whether the 



impermeable and permeable models serve as the upper or lower bound of the 
dielectric crack model. This critical state is affected by the crack speed and 
material gradient and can only be calculated numerically. The fracture behaviour 
of interfacial crack problem has also been investigated by using an interfacial 
layer model. Numerical calculations indicate that the parameters of this layer 
model have significant effect on the transition among different crack models.  
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