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Abstract: Formation of basalt columns during cooling of lava may be modeled
by the drying of colloidal silica suspension confined in capillary cells (Allain and
Limat 1995, Gauthier et al. 2007). During the drying process, particles aggre-
gate at the open edge forming a growing drained gelled porousmedium. High
negative capillary pressure in the draining fluid (Dufresneet al., 2003) and adhe-
sion to the walls of the cells generates high tensile stresses in the gel leading to
crack formation. Depending on the experimental conditionsand the shape of the
cell (rectangular or circular), several crack morphologies appear. Here the aim
is to compare the experimental morphologies with the ones predicted by fracture
mechanics. For this purpose, the drained gelled porous medium is modeled by a
linear elastic medium subjected to tensile prestresses andthe cracks by the varia-
tional approach to fracture of Bourdin, Francfort and Marigo (1998, 2000, 2008).

1 Introduction

The basalt columns are formed during the directional cooling of a lava flow.
Cooling can be simulated advantageously by experiments of drying, cooling like
drying inducing similar fields of prestresses. Nevertheless the pilot experiments
used until now, on nontransparent materials (cornstarch inparticular, cf Goehring,
Morris al. [11]) do not make it possible to observe the dynamics of formation of
the fractures. On the other hand, experiments of directional drying carried out
on transparent colloidal suspensions in circular capillary tubes (Gauthieret al
[10]) allowed to reproduce and observe some of the still badly explained aspects
of the columns: facies presenting a smooth and rough alternation, dynamics of
propagation by jumps [13]. In this paper, we will consider such directional dry-
ing experiments and study the influence of the capillary tubecross section shape
on the crack morphologies. The experimental morphologies obtained in circu-
lar, square and rectangular tubes will be retrieved by two dimensional non local

1



damage model simulations. In the present paper, we will concentrate on a quali-
tative comparison. A more quantitative study is underway but remains still to be
completed.
Experiments of directional drying of colloidal suspensionin flat rectangular capil-
lary tubes have been performed first by Allain and Limat [1] and then by Dufresne
et al. [7, 8]. For thin cells, they observed an array of parallel cracks perpendicu-
lar to the flat direction of the cell. In circular tubes, Gauthier et al [10] observed
the formation of two perpendicular cracks containing the axis of the cylinder. In
both cases, the cracks grows along the drying direction. In this paper, some new
experiments on thick rectangular cells and on square ones will be presented. In
the thick ones, some cracks parallel to the flat direction appear in addition to the
array of parallel cracks; in the square ones, we observe two cracks cutting the
cross-section along the diagonals.
For the numerical analysis, we will use the energetic approach to brittle fracture
of Francfort and Marigo [9], which is able to approach the phenomena of initia-
tion, multicracking and complex crack paths. In order to usethe traditional finite
elements, our work will be based on a regularized version of the energetic for-
mulation, which may be mechanically interpreted as a non-local gradient damage
model [5]. Two dimensional simulations on the cross sectionof the tubes allow
us to retrieve qualitatively the experimental observed morphologies.

2 Experiments

Experiments are carried out, at room temperature, us-
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Figure 1: Experimental
setup

ing aqueous suspensions of mono disperse silica spher-
ical particles (Ludox HS 40) of radiusr = 15 ± 2
nm and volume fractionφ ≃ 0.2. To investigate uni-
directional drying, vertical glass capillary tubes are
used; the top of the tube is closed and the bottom one
is placed in a surrounding maintained at a constant
humidity rate using a desiccant. The tube is only par-
tially filled with the suspension so that the air and sol-
vent vapor, located above the suspension can expand
to compensate the loss of solvent during desiccation.
As the sample loses solvent, particles aggregate at the
open edge forming a growing drained gelled porous
medium (fig. 1). High negative capillary pressure in
the draining fluid generates high tensile stresses in the
gel. This causes crack formation [7] following the

drying direction. Depending on the tube morphology, several crack morphologies
appear (see fig. 2):

• for circular cells (diameter∼ 1 mm), two vertical perpendicular cracks;

• for square cells (diagonal∼ 1 mm), two vertical perpendicular cracks along
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the diagonals of the square (see also picture of figure 1);

• for flat rectangular cells (thickness< 100µm, aspect ratio> 20), an array
of parallel cracks perpendicular to the largest walls;

• for more thick rectangular cells (thickness> 200µm, aspect ratio> 20),
two sets of perpendicular cracks: as before, an array of parallel cracks and
some crack parallel to the large walls. For technical reasons, it is difficult
for the moment, to determine if this last crack corresponds to delamination
between the porous medium and the wall or to a crack that is located inside
the porous medium. Several clues indicates that the crack islocated inside:
if delamination occurs at both sides, the medium under tensile stresses be-
comes unloaded and cracks shall no more propagate, but this is not the
case; the dynamics of crack propagation is the same as in circular or square
tubes where the cracks are inside the medium; the numerical calculations
predicts the presence of a crack at mid wall (see below).
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Figure 2: Different cells and cracks (in greyscale) morphologies

The dynamics of crack propagation undergoes an intriguing jerky crack motion
described in [8, 10]. But the analysis of this interesting motion is not the aim
of this paper. In the sequel, we will focus on the two dimensional problem of
the crack morphologies in a cross section; hence we will try to retrieve the crack
patterns depicted on the bottom view of figure 2.
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3 A simplified model of drying during directional
drying

3.1 A simplified mechanical model of drying

For the present qualitative study, the two dimensional horizontal cross sectionS
problem is considered (bottom of figure 2). We suppose the material elastic and
isotropic. We replace the loading due to high negative pressure that appears at the
liquid meniscus formed by the particles at the bottom air/water evaporation inter-
face [7] by a given tensile isotropic prestressσ0 > 0 or an equivalent mismatch
strainǫ0 > 0, so that:

σ = λtrǫ 1 + 2µǫ + σ01 ⇔ ǫ =
1 + ν

E
σ −

1

E
trσ 1 − ǫ01 (1)

whereλ andµ are the material Lamé coefficients,E is the Young modulus andν
is the Poisson coefficient. The gel adheres to the wall, so that the displacement is
zero at the boundary of the section:u = 0.

3.2 Variational approach to fracture

Following the energetic approach of Francfort and Marigo [9], the fracture prob-
lem consists in finding the displacement fieldu satisfying the boundary condi-
tions and the crack patternΓ that minimizes the total energyEt defined as the sum
of the potential energy of the system, sayEp, and the surface energy associated to
the crack, sayEs:

Et(u, Γ) = Ep(u, Γ) + Es(Γ) (2)

where:

Ep(u, Γ) =

∫

S/Γ

[

λ

2
(trǫ(u))2 + µ ǫ(u) : ǫ(u) + σ0 trǫ(u)

]

dS (3)

Es(Γ) = Gc length(Γ), (4)

Gc denoting the energy required to create a unit length crack.

The functional (2) should be minimized among all admissibledisplacement fields
and crack surfaces. The associated minimization problem isreferred to [2] as a
free discontinuity problem. To solve it numerically by using standard finite ele-
ments we used a regularization technique originally developed for analog prob-
lems in image segmentation [12] and adapted to fracture mechanics by Bourdin
et al. [4]. The energy functional (2) is approximated by the following family of
elliptic functional depending on a regularized displacement field u and an addi-
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tional scalar fieldα ∈ [0, 1]:

E
ℓ
t (u, α) =

∫

S

[

(1 − α)2
λ

2
(trǫ(u))2 + µ ǫ(u) : ǫ(u) + σ0trǫ(u)

]

dS+

+Gc

∫

S

[

α2

4ℓ
+ ℓ∇α · ∇α

]

dS

(5)

Forℓ → 0, the minimizers of (5) are characterized by bands withα close to 1 and
high displacement gradients. Those bands, whose thicknessis of the order ofℓ,
are a regularized approximation of the cracks lines. Mathematically, it is possible
to show (see [6]) that the global minimizers of (5) tends to the global minimizers
of (2) whenℓ → 0. From the mechanical point of view, the functional (2) may be
interpreted as the energy functional of a non-local gradient damage model, where
α stays for the damage field andℓ for the internal length.
For a given value of the loading parameterσ0, we solved the regularized mini-
mization problem for (5) by using standard linear triangular finite elements and
the alternate minimization strategy detailed in [3]. The prestressσ0 is assumed
to be constant; the damage fieldα is set equal to zero at the boundary to simulate
perfect bonding.

4 Qualitative comparison between experiments and
numerical simulations

(a) Circular tube (b) Flat rectangular tube

(c) Squared tube (d) More thick rectangular tube

Figure 3: Non local damage model with gradient. Elastic medium with tensile
prestresses.

5



Figure 3 reports the results of the numerical simulations for the cross sectional
shapes of figure 2. All the patterns observed experimentally(bottom of figure
2) can be retrieved by the numerical model. In the case of thick rectangular
cells, a crack at mid distance of the largest walls appears inthe simulations. This
leads to interpret the secondary cracks that appears in the experiments as a crack
inside the medium and not a delamination crack. But this point merits further
investigations.
By the moment, we are able to report only qualitative agreement between the
numerical and experimental results. The challenge now is toperform more quan-
titative comparisons. This suppose a large amount of theoretical, experimental
and numerical work. Experimentally, the control parameterof the experiments
have to be varied (temperature, hygrometry, particle nature and size...) and the
material has to be characterized mechanically. Numerically, the influence of the
small parameterℓ, which may be interpreted as an internal length, has to be an-
alyzed in details. This will demand also a further theoretical groundwork for the
analysis of the behavior of the underlying non-local damagemodel. This study is
the subject of ongoing works.

5 Conclusion

By using the regularized formulation of the variational approach to fracture me-
chanics proposed by Bourdin, Francfort and Marigo and a simplified 2D mechan-
ical model of directional drying of colloidal suspensions,we are able to retrieve,
at least qualitatively, the crack morphologies. This first study is encouraging and
will be completed by more quantitative experimental and numerical results. The
experiments shall shed some new light on the basalt column formations. The nu-
merical simulations may be complementary to the experiments by highlighting
the pertinent experimental parameters.
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