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Abstract 
 
The propagation of short fatigue cracks is simulated in the microstructure of an 
austenitic-ferritic duplex steel by means of a mechanism-based model. Due to 
strong interactions with microstructural features, such as grain and phase 
boundaries the growth rate of these short cracks is substantially non-uniform. The 
strength of these barriers has been quantified by a Hall-Petch analysis and the 
findings have been implemented into a two-dimensional model for stage I crack 
propagation, which considers the orientation of available slip systems and can 
predict the crack growth in a real microstructure. The model allows the activation 
of secondary slip systems at the crack tip resulting in a crack propagation on 
multiple slip bands. To study the effect of a misorientation between two slip 
planes on crack propagation the stress field at the tip of a surface crack is 
calculated using a three dimensional extended crack model. Crack growth 
simulations carried out with the model show good agreement with experimental 
data. 
 
 
1 Introduction 
 
Many components in industrial applications are subject to a cyclic loading in the 
high cycle fatigue regime at stress amplitudes, which are close to the fatigue limit. 
Under these conditions, the phase of crack initiation and short crack growth can 
last up to 90% of the total lifetime. These cracks exhibit strong interactions with 
microstructural features such as grain boundaries and the growth mechanism 
(stage I) is significantly different from that of long cracks. Thus, the propagation 
rate cannot be described by the methods of linear elastic fracture mechanics. 
 
In polished test specimens fatigue cracks often initiate at locations in the 
microstructure, which are subject to elevated stresses. This stress increase can be 
caused by inclusions or the anisotropic elastic properties of the grains. Once 
initiated, a stage I-crack can grow on individual favourably orientated slip bands 
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characterized by a high Schmid factor and the propagation rate is controlled by 
the crack tip slide displacement CTSD (Fig. 1a). The grain boundaries act as 
obstacles to crack propagation, as they prevent a transmission of slip into the 
neighbouring grain. This yields a dislocation pile up in front of the barrier 
resulting in a decreased crack growth rate. If the boundary is broken, the stress 
intensity will be relieved by slip in the next grain and the crack propagation rate 
will increase again, resulting in an oscillating crack growth.  
 
With increasing crack length additional slip systems are activated at the crack tip 
and the crack grows on alternating slip systems. The crack path is deflected from 
a plane with maximum shear stress into a direction perpendicular to the applied 
load. As long as the length of the active slip bands at the crack tip is still 
determined by the microstructure, the crack can still be regarded as 
microstructurally short. Even a return to crack propagation on a single slip system 
is possible if there are not enough favourably orientated slip systems available.  
 
A stage I short crack model has to predict the abnormal propagation behaviour 
described above. Approaches that fulfil this requirement are the analytical models 
of Taira [1] and Navarro and de los Rios [2]. There, the extension of the plastic 
zone is blocked by the next grain boundary until a critical stress in a dislocation 
source behind the barrier is reached to activate a new slip band. Based on this idea 
a two dimensional model has been developed, which is able to predict crack 
growth in a real microstructure and considers the orientation of available slip 
systems in the crystals. The boundary value problem is solved numerically by 
means of a discretisation with dislocation dipole boundary elements. 
 
According to Navarro and de los Rios, the fatigue limit of a material can be 
interpreted as the stress amplitude below which crack propagation stops at grain 
boundaries. Because of that it is essential for a model to predict the stress state in 
a dislocation source behind a grain boundary correctly. The two dimensional 
model already considers the tilt angle between two slip systems of two 
neighbouring grains. Nevertheless, more accurate results could be obtained by a 
three dimensional model that considers the real orientation of slip planes 
including the twist angle between them. Thus, the two dimensional model is 
extended to a three dimensional one for surface cracks in a semi-infinite body so 
that the shear stress in a dislocation source can be calculated correctly. The three 
dimensional surface crack can be modelled by a continuous distribution of 
dislocation loops [3]. The effect of the twist angle has been analysed and the 
findings are considered in the two dimensional model. 
 
The model is applied to the microstructure of an austenitic/ferritic duplex steel 
(X2CrNiMoN 22 5 3), thus both grain and phase boundaries have to be 
considered. 
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2 Two-dimensional short crack model 
 
In order to model the propagation of microstructurally short cracks a two 
dimensional yield strip model has been developed. The model allows an opening 
and a tangential displacement of the crack flanks. If the shear stress τ reaches the 
critical value for dislocation motion τb a plastic deformation due to slip on the 
active slip band in front of the crack tip occurs.  
 
An extension of the plastic zone is blocked by the next grain boundary until a 
critical stress intensity is reached on a dislocation source beyond the barrier in the 
neighbouring grain. If this critical stress intensity is reached, the respective slip 
band is activated and the plastic zone grows into the new grain. The crack 
propagation rate, which decreased significantly in front of the grain boundary, 
increases again. This results in an oscillating crack growth rate that is 
characteristic for microstructurally short cracks. The critical stress intensities for 
grain and phase boundaries were quantified experimentally by a Hall-Petch 
analysis [4]. 
 
The crack problem is solved numerically by means of a discretization with 
dislocation dipole boundary elements, which represent a constant relative 
displacement over the element. The elements in the plastic zone consist of a 
negative and a positive dislocation tangential to the crack so that a slip 
displacement can be modelled (Fig. 1b). In addition to that a crack element also 
allows an opening displacement that is achieved by a dislocation dipole normal to 
the crack. The stress state in the material around the growing crack can be 
calculated by so called sensor elements. 
 

 
Fig. 1: Stage I-crack (a) and model with boundary element discretization (b). 
 
The elements are connected to each other by the influence function Gij, which 
describes the stress in an element i due to a displacement in an element j. The 
total stress i

nnσ  and i
tnτ  is obtained by summation over all elements plus the 
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external normal and shear stress ∞i
nnσ  and ∞i

tnτ . The consideration of the boundary 
conditions yields the following system of inequalities: 
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Here, p is the number of crack elements and q the number of elements in the 
plastic zone. To consider roughness induced crack closure a penetration of the 
crack flanks is prevented (Eq. 3). The crack propagation is calculated from the 
range of the crack tip slide displacement ∆CTSD by a power law function (Eq. 4), 
which is analog to the model of Navarro and de los Rios.  
 

mCTSDC
dN
da

∆⋅=  (4) 

 
In Eq. 4, C is a material specific constant and m is an exponent that is usually very 
close to one. A more detailed description of the short crack model can be found in 
[5]. 
 
With growing crack length the stress intensity on additional slip planes in front of 
the crack increases [6,7]. This can yield an activation of an inactive slip plane at 
the crack tip, which is the beginning of crack propagation in double slip 
mechanism. To identify the activation of a second slip band, additional sensor 
elements representing other slip planes of the grain are positioned at the crack tip 
to determine the shear stress on those slip planes (Fig. 2a). Once a critical value is 
reached on one of these sensors the respective slip band is activated and plastic 
deformation occurs on this plane. In the model the activation of a second slip 
band is considered by meshing it with plastic zone elements (Fig. 2b). Then, crack 
growth results from the crack tip slide displacement on two slip bands, which 
results in a deflection of the crack growth into a plane perpendicular to the applied 
load (Fig. 2c). 
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Fig. 2: Transition from crack growth in the single slip mechanism to the double 
slip mechanism. 
 
 
3 Three-dimensional extension of the short crack model 
 
3.1 Modelling of three-dimensional cracks 
 
In order to consider the real orientation of slip systems the presented short crack 
model is extended to three dimensions. Thus, an arbitrary planar surface crack S 
in a semi-infinite solid under remote loading ∞

jkσ  is considered. The relative 
displacement between the crack faces can be represented by a continuous 
distribution of infinitesimal dislocation loops dS [3]. As the stress field at a 
position x due to an infinitesimal dislocation loop of strength dSbm  in 'x  is 
known, the stress induced by the crack can be calculated by integration over the 
crack surface S. By enforcing that the surface of an open crack is traction free the 
following integral equation is obtained: 
 

0)()'()',()( =+= ∞∫ xxxxx jk
S

mjkmjk dSbK σσ  (5) 

 
The kernel jkmK  can be split into a singular part s

jkmK , which results from the 

crack in an infinite space, and a regular part r
jkmK  that considers the free boundary 

of the half space. For the planar crack it is sufficient to calculate the stress 
components xzσ , yzσ  and zzσ  in the local crack coordinate system where the z-
axis is normal to the crack surface. However, the calculation of the shear stress on 
slip bands in neighbouring grains requires the calculation of the complete stress 
tensor. In general s

jkmK  is given by [8]: 
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ilmnC  is the tensor of the elastic constants, iii xxr '−=  and iirrr = . The regular 
part, which accounts for free boundary is also given in [8]. 
 
Since the Kernel s

jkmK  is hypersingular with a singularity of 3−r  when r 
approaches zero the integral exists only in a finite part sense. To calculate the 
integral the semi-analytical method proposed by [3] is applied.  
 
To solve Eq. 5 numerically, the crack surface is meshed with finite dislocation 
loop elements. The relative displacement in each element is approximated by a 
linear interpolation function. These elements have been proposed by [3] and show 
a better convergence compared to elements with constant displacements. 
 
3.2 Stress field at the tip of a three dimensional crack 
 
The three-dimensional model is used to analyse the shear stress field on a 
dislocation source behind a grain boundary. Thus, a semi-circular surface crack is 
considered, which is perpendicular to the free surface and inclined about 45° to 
the loading axis (Fig. 3). To consider the critical situation with a maximum shear 
stress acting on possible slip planes beyond the grain boundary it is assumed that 
the crack front is located directly in front of this barrier. According to Navarro 
and de los Rios, short crack growth stops at this point at stress amplitudes below 
the fatigue limit.  
 

 
Fig. 3: Misorientation between slip planes in different grains (a) and meshed 
semi-circular surface crack with stress sensors beyond the grain boundary (b). 
 
Using this model the shear stress distribution is calculated in a constant radius 
around the crack tip for an external loading of 400MPa. In Fig. 4 the shear stress 
τxz in the local xyz-coordinate system is plotted for slip band angles between –90° 
and 90°. In order to study the effect of a twist angle between the crack plane and a 
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slip plane in the neighbouring grain, results are also given for slip planes, which 
are rotated around the local x-axis about the respective twist angle ψ .  
 
The simulations show that an additional twist angle reduces the shear stress on a 
dislocation source behind the grain boundary significantly. Thus, an activation of 
the respective slip system gets more and more unlikely with an increasing twist 
angle.  
 

 
Fig. 4: Shear stress on dislocation source at different slip band angles and twist 
angles. 
 
The slip bands in the two-dimensional model are the intersection lines of the slip 
planes in the crystal with the surface. Because of that the three-dimensional 
orientation of the slip planes and the misorientation between two planes in 
neighbouring grains is known, but only the tilt angle between two slip planes is 
considered by the orientation of the sensor elements.  
 
Therefore, the results from the three dimensional model are used to consider the 
effect of a twist angle also in the 2D-model. As can be seen in Fig. 4 the 
maximum shear stress occurs on slip planes with a twist angle of 0° at slip band 
angles of –68° and 59°. The reduction of the shear stress τxz at these angles with 
increasing twist angle is shown in Fig. 5. It can be seen that the decrease of shear 
stress is approximately proportional to ψcos . Thus, the shear stress on a sensor 
element in the 2D-modell is multiplied by ψcos  to account for a twist angle with 
sufficient accuracy. 
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Fig. 5: Decrease of shear stress on a dislocation source with increasing twist 
angle. 
 
 
4 Results 
 
The modified two-dimensional model is used to simulate short crack propagation 
in an austenitic/ferritic duplex steel. Thus, a virtual microstructure of the material 
has been generated using the Voronoi technique [5], which has the same average 
grain size and phase distribution as the real microstructure. The crack growth 
simulation starts with an initial crack on a slip band in one grain (Fig. 6). Then the 
crack growth through several grains in the single slip mechanism until the stress 
intensity on an inactive slip system at the crack tip reaches a critical value to 
activate the slip band, which is the beginning of crack growth in the double slip 
mechanism. Due to the lower strength of the austenitic phase, the activation of a 
second slip band occurs usually in an austenitic grain. At the other crack tip crack 
propagation continues in the single slip mechanism. It is even possible, that the 
growth mechanism returns from double to single slip after the transition of a grain 
boundary. This has been observed in fatigue experiments [4] when the crack 
grows from an austenitic grain into a ferritic one. 
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Fig. 6: Crack path in virtual microstructure of an austenitic/ferritic duplex steel. 
 
 
5 Conclusions 
 
A two dimensional model for stage I crack propagation is presented, which is able 
to reproduce the barrier effect of grain and phase boundaries and considers crack 
closure. The model allows the activation of additional slip systems at the crack 
tip, which yields a crack propagation on multiple slip planes in the double slip 
mechanism. The twist angle between two slip planes in neighbouring grains 
influences the barrier effect of the respective grain boundary. To quantify this 
influence the stress field around a semi-circular surface crack has been calculated. 
For this purpose, an extended three dimensional model has been developed where 
the crack is represented by a distribution of dislocation loops. It was found that 
the shear stress reduces significantly with increasing twist angle so that an 
activation of the respective slip plane becomes more and more unlikely. The 
findings were implemented into the two dimensional model, which has been used 
to simulate crack propagation in a virtual microstructure of a duplex steel. 
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