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Abstract 
 
Experimental data from the literature for a wide group of metallic materials 
including steel, titanium, copper, and aluminum alloys obtained under a wide 
range of fatigue testing conditions were examined for common trends associated 
with Stage II fatigue crack growth rates.  Among these trends, the correlation 
between the striation data and Young’s modulus (E). Also, the linear relation 
between Paris parameters (m vs. log C) and its correlation with Young’s modulus.  
These trends are discussed in reference to fatigue crack growth rates under 
closure-free conditions. The results emphasize the importance of E on fatigue 
crack growth behavior of metallic materials and provide a basis to predict fatigue 
life of engineering components under various conditions.  Comparisons are made 
with crack growth equations that are commonly employed in damage tolerance 
analyses. 

1 Introduction 

Numerous experimental data for a wide range of different metals and alloys have 
confirmed that the Paris region crack growth rates are directly related to ΔK by an 
empirical relation known as the Paris relationship, or sometimes, as the Paris-
Erdogan relationship [1]: 

mKC
dN
da

Δ=          (1) 

where C and m are scaling constants, m is the slope of the Paris region and C is 
the intercept at ΔK equal to 1. 
 
The parameters m and C in the Paris relationship show some sensitivity to 
environmental and experimental conditions, and the metallurgical and mechanical 
properties of the material tested. Although, many efforts have been made to model 
fatigue crack growth rates (FCGR) and predict the values of m and C, modeling 
has proven to be challenging due to the complexity and difficulty in quantifying 
crack closure. Crack closure effects have been shown to play a significant role in 
affecting the FCGR and, consequently, the values of m and C.  Predictions of 
Paris parameters would be less challenging if made for closure-free conditions, 
i.e., ΔK ≈ ΔKeff. Many investigators demonstrated a good correlation between 
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FCGR and the ratio ΔK/E, particularly under closure-free behavior [2-4].   
Hertzberg [5] showed this correlation is most relevant under closure free 
conditions and he established a simple relationship to estimate FCGR under 
closure-free conditions in the following form: 
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where b is Burgers vector which is based on the atom diameter as calculated from 
the crystal structure. 
 
A closer examination of Hertzberg’s relation suggests E is the key factor in 
controlling FCGR as b does not change significantly for different metals, i.e., b 
ranges approximately from 2.5×10-10 to 3.0×10-10 m [5]. Thus, based on an 
average b value of 2.75×10-10 m, Hertzberg’s relation can be rewritten with a 
coefficient of ~ 6×107 as: 
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Hertzberg’s relation implies that changing the microstructure of a material, which 
generally affects mechanical properties without significant effect on E, may not 
impact FCGR significantly and hence material’s fatigue resistance under high 
operating R (R is the load ratio defined as Pmin/Pmax and it is referred to here as R-
ratio).  At high R-ratios fatigue cracks are known to grow under closure free. 
 
Furthermore, it has been shown that the parameters m and C are inter-related for a 
wide variety of materials [6,7-17].  A log-linear relationship has been observed 
for a given material under different testing conditions such that:  

βα += mC)log(      (4) 

where α and β are the coefficients of the regression line (α is the slope and β is 
the intercept at m = 0), as shown schematically in Fig. 1. Hickerson and Hertzberg 
[7] pointed out that the correlation in Eq. (4) is a result of the fact that different 
slopes of the Paris region obtained under different test conditions tend to converge 
to a single point, termed the pivot point, shown in Fig. 1. One implication of this 
convergence is that curves of higher growth rates are always associated with 
lower values of m. 
 
Tanaka et al. [6] indicated that the pivot points for steel, titanium, and aluminum 
alloys occurred consistently within ΔK range where striation became visible on 
fatigue fracture surfaces. Tanaka et al. [6] believed that the typical fatigue fracture 
mechanism (striation formation) operates most strongly in the vicinity of the pivot 
point. Iost and Lesage [11] reviewed pivot points for an extensive range of steel, 
titanium, copper, and aluminum alloys from more than 30 publications conducted 
under different testing conditions. They showed graphically that a correlation 
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existed between (da/dN)pp vs. ΔKpp on logarithmic axes of (da/dN)pp/b vs. 
ΔKpp/E√b. 
 
The extensive work of Tanaka et al. [6], and Bates and Clark [18] is of particular 
interest. These workers examined independently the relationship between striation 
spacing (da/dN) and ΔK level at which they become visible on the fatigue fracture 
surfaces for several structural alloys including steel, titanium and aluminum 
alloys tested at different R-ratios including R = 0. They showed a good correlation 
between FCGR and the ratio ΔK/E. It was interesting to see all their striations data 
fell within a scatter band when ΔK was normalized with respect to E. 
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Fig. 1: Schematic representation of the pivot point and the relation between m and 

log(C) for a given material when tested for instance under different R-ratios. 

 
The aim of the present work is to examine closely the correlation of FCGR to the 
ratio ΔK/E that was observed for closure-free behavior, pivot points and striation   
data for different metals. Efforts were made to explore these correlations and 
determine its importance and implications.  

2 Linear Relation Between ΔKpp and (da/dN)pp 

Iost and Lesage [11] reviewed pivot points for an extensive range of steel, 
titanium, copper, and aluminum alloys. They showed graphically that a 
correlation existed between (da/dN)pp vs. ΔKpp on logarithmic axes of (da/dN)pp/b 
vs. ΔKpp/E√b.  However, for the purpose of this study their data were shown on 
logarithmic axes of (da/dN)pp vs. ΔKpp/E.  Fig. 2 shows all the data collected by 
Iost and Lesage [11]. Several more data points were included from recent 
publications [8,12-14].  The selected E values for all the alloys are listed in Table 
1 which are based on E of the principal alloying elements (e.g., Al in Al-based 
alloys, Cu in Cu-based alloys, Ti in Ti-based alloys, and Fe in Fe-based alloys).  It 
is recognized that there will be slight differences in E between different alloys in 
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the same metal-based system, but such differences would have insignificant 
impact on Sage II da/dN.  
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Fig. 2: Pivot point data for aluminum, copper, titanium and steel alloys are 
normalized with respect to E and plotted on logarithmic scale. 

 

Table 1: Magnitude of Burgers vector (b) and elastic modulus (E) used to 
calculate Hertzberg’s relation. 

Alloy b [10-10 m] E [GPa] 3

1
Eb

C =  

Aluminum 2.86 70 1.72×10-7 

Copper 2.56 120 3.62×10-8 

Titanium 2.95 117 3.73×10-8 

Steel 2.48 200 7.94×10-9 

 

Every single datum point in Fig. 2 represents a whole fatigue study by itself that 
included, in some cases, about twenty fatigue tests conducted on a given alloy 
under different testing conditions.  It is evident from Fig. 2  that when ΔKpp is 
normalized with respect to E for the base metal, data for the different alloys tend 
to fall on the same straight line within a relatively narrow scatter band.  It is quite 
impressive to see all these alloys with diverse metallurgical and mechanical 
properties tested under different conditions exhibit such consistency. Two 
aluminum points deviated notably from the others, which could be related to the 
lack of sufficient data or difficulties in estimating m and C, i.e., in some instances, 
the experimental data of Stage II show significant curvature which can affect the 
slope of m and makes its value greatly dependent on the range of ΔK considered. 
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3 Correlation with FCGR under Closure-Free Conditions 

 Linear regression was carried out on the data of Fig. 2 and a best fitting line 
obtained (solid line in Fig. 2): 
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when (da/dN)PP is expressed in mm/cycle and ΔKPP in MPa√m. Note the 
resemblance of Eqs. (3) and (5).  Therefore, an argument can be that the data in 
Fig. 2 represent the FCGR behavior under closure-free conditions. Hertzberg’s 
prediction line for closure-free behavior is included for comparison in Fig. 2, 
where this line was based on Eq. (3).  It is evident that a great similarity exists 
between the normalized ΔKpp data in Fig. 2 and Hertzberg’s relation.  In fact, 
Hertzberg’s prediction line was almost identical to the best fit line of the pivot 
points obtained via Eq. (5). 
 
One significant implication to be drawn from Fig. 2 is that the pivot points for any 
group of alloys in a common alloy system (steel, Cu-based, Ti-based, or 
aluminum-based alloys) always fall on a line that represents FCGR under closure-
free conditions (the upper bound for FCGR).  This upper bound is identical for 
this group of alloys regardless of what the composition, metallurgical and 
experimental conditions are, as was implicated earlier by Hertzberg’s relation.  As 
a result, Fig. 2 confirms the notion that modifications in the alloy's composition, 
microstructure or mechanical properties affect the fatigue behavior at the 
threshold and near-threshold regions by contributing to different crack closure 
processes [16,17].  As ΔK is increased beyond the threshold region, crack closure 
gradually diminishes and FCG become closure free. This leads to the very 
important conclusion that variations in the ΔKPP values for any alloy system 
(steel, Cu-based, or Al-based alloys) are due to the differences in the extent  of 
crack closure contribution from one alloy to another under different experimental 
conditions.  This will be more evident in Section 5.  This finding is not well 
recognized in the fatigue literature and could have important implication on the 
development of alloys with better fatigue crack growth resistance. 

4 Correlation with Striation Spacing 

Fractographic studies reveal that striation spacing commonly reflects the 
incremental advance of the crack front resulting from one loading cycle (striation 
spacing is equivalent approximately to da/dN). In Fig. 3, the striation data 
reported by Tanaka et al. are compared with the line corresponding to Hertzberg’s 
equation and with the scatter band obtained from Fig. 2.  Most of the striation data 
fall within the scatter band with some points deviating slightly out of the band.  In 
view of the good agreement in Fig. 3, it is reasonable to assume that the 
correlation of striation spacing with respect to E cited by Tanaka et al. [6], and 
Bates and Clark [18] originated from the fact that their striation data correspond 
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to FCGR under closure-free conditions i.e., striations become visible under 
closure-free behavior. 
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Fig. 3: Striation spacing data [6] for different structural alloys are compared with 

Hertzberg’s line and the scatter band of the pivot points of Fig. 2. 

 
Knowing the fact that some of the striation data were obtained at zero R-ratio, Fig. 
3 confirms the notion that closure processes become insignificant at high ΔK 
values, i.e., striation spacing is insensitive to R-ratio at high ΔK and depends on 
the value of ΔK and the class of alloy (steel, Cu-based, Ti-based, or Al-based 
alloys). Additionally, the trends in Fig. 3 have an important implication. They  
imply that striation spacing is independent of the metallurgical structure of the 
material, as was the case for closure-free behavior, and as was reported in the 
literature [6]. 

5 Some Considerations on the m vs. log(C) Relation  

An assessment of the published fatigue data [19-21] related to the current work 
has shown that the real FCGR curves for a given material under different testing 
conditions in many cases converge to a common single point.  It is interesting to 
note that several studies on a wide range of steels including ferritic-pearlitic, 
ferritic-bainitic, fully bainitic, and fully martensitic microstructures in moist and 
dry environments at different R-ratios have shown similar behavior to those 
shown in Fig. 1. This behavior is explained through the effects of closure 
processes, particularly the oxide-induced closure and roughness-induced closure 
[21].  For instance, Fig. 4 shows fatigue crack growth curves for pressure vessel 
martensitic steel (2 ¼ Cr- 1Mo steel, σys = 769 MPa) tested in moist air and dry 
hydrogen gas at R = 0.05 and 0.75 (50 Hz) [22].  The lines of Eqs. (2) and (5) are 
shown in Fig. 4 where they compare reasonably well with the fatigue curve at 
0.75 R-ratio (closure-free curve).  At R = 0.05, fatigue curves in air and dry 
hydrogen started with higher threshold values and gradually approached the air 
curve of R = 0.75 as ΔK was increased.  The values of m and C were calculated 
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for the four curves and these are shown on semi-logarithmic axes in Fig. 4, along 
with the equation of the best fit line. 
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Fig. 4: Fatigue crack growth curves of pressure vessel martensitic steel (2 ¼ Cr- 

1Mo steel) tested in moist air and dry hydrogen gas at R = 0.05 and 0.75 [22]. 

Changing the steel composition will lead to a convergence of fatigue curves at 
higher ΔK and (da/dN) but is still along the line of Eq. (5).   Fig. 5 shows this shift 
in martensitic 300 M-T650 steel (σys = 1070 MPa) tested in moist air and dry 
hydrogen at R = 0.05 and 0.75 (50 Hz) [23].  The shift to higher ΔK value is an 
indication of increased contribution of the closure process, i.e., oxide-induced 
closure  in  this  case [23], as  evidenced  by the  lower  FCGR  at  R = 0.05  when  
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 Fig. 5: Fatigue crack growth curves of martensitic 300M-T650 steel tested in 

moist air and dry hydrogen gas at R = 0.05 and 0.75 (50 Hz) [23]. 

compared to those of Fig. 4. Note the air curves at R = 0.75 in Fig. 4 and Fig. 5  
are almost identical and in agreement with Eqs. (2) and (5).  The convergence of 
fatigue curves and the remarkable correlations with Eqs. (2) and (5) were also 
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found for 2219-T851 aluminum alloy (σys = 350 MPa) and Ti-6Al-4V alloy (σys = 
774 to 848 MPa), as can be seen in Fig. 6 [24] and  Fig. 7 [25], respectively.   
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 Fig. 6: Fatigue curves for 2219-T851 aluminum alloy in ambient air at different 

R-ratios [24]. 
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Fig. 7: The effects of microstructure and R-ratio on fatigue crack curves of Ti-

6Al-4V alloy in laboratory air at 20 Hz [25]. 

6 Estimation of the Fatigue Curve under Closure-Free conditions in Air 

It is worth noting that Liaw et al. [26] reviewed threshold data in air under 
closure-free conditions (ΔKth,eff) for six alloy systems including iron, aluminum, 
copper, magnesium, nickel, and titanium.  They found ΔKth,eff to be directly 
proportional to E regardless of its metallurgical state: 

EK effth
5

, 106.1 −×=Δ      (6) 

where ΔKth,eff is in MPa√m and E in MPa. Note Eq. (6) shown as point A in Figs. 
4 to 7. 
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Thus, the dependence of FCGR under closure-free conditions on E is applicable 
for the threshold region (Stage I) as well.  Recognizing that stage I rises very 
steeply from the threshold value, the stage I-II transition is anticipated to be near 
and slightly above ΔKth,eff.  Therefore, we can construct approximately the whole 
fatigue curve in air (Stages I and II) for any metal under closure-free conditions 
as, can be seen Fig. 8.  Note either Eq. (2) or Eq. (5) can be used to model stage II 
since the difference between the two is not that significant. It is reasonable to 
approximate stage I behavior by drawing a vertical straight line through point A 
on the conventional log-log plot of da/dN vs. ΔK.  Note da/dN = 5.43×10-7 
mm/cycle at stage I-II transition is the same for all the alloys, which can be 
obtained by substituting Eq. (6) in Eq. (2). 
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Fig. 8: Simplified fatigue curves under closure-free conditions for steel, titanium 

and aluminum alloys in air. 

7 Implication on the Industry 

Fatigue loading is a serious concern for dynamic risers and free spanning subsea 
pipeline used for oil and gas recovery from deep seawater. An Engineering 
Critical Assessment (ECA) is a procedure normally used to define tolerable flaw 
size in critical welded joints for risers and subsea pipelines.  A number of codes 
provides guidance for carrying out an ECA including, BS 7910 [27] and API-RP-
579 [28]. These codes utilize both fracture mechanics and fatigue crack growth 
analyses to determine maximum tolerable weld flaw size. A similar equation to 
Hertzberg’s equation has been adopted for steel in BS7910.  However, for non-
ferrous metals, BS7910 specifies an equation that is un-necessarily expressed as a 
function (Esteel/Emetal) which may be confusing when in reality the form of 
Hertzberg’s equation should be sufficient. This is also the case for the threshold 
values (ΔKth,eff) where the equation by Liaw et al., Eq. (6), should be adopted.  
These two points are important in view of the findings of the current work which 
has improved the confidence in both equations. 
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8 Conclusions 

The fatigue literature has revealed a correlation between FCGR and the ratio 
ΔK/E for different metals tested under a wide range of conditions.  This 
correlation was observed by many to be relevant to fatigue under closure-free 
behavior, striations and between the Paris parameters m and C.  A link was made 
between the three correlations in this study.  The results highlight and give 
credence to the following conclusions: 

1. The notion that modifications in the alloy's composition, microstructure or 
mechanical properties affect the fatigue behavior, by contributing to 
different closure processes at low R-ratios and only at the threshold and 
near-threshold regions. 

2. Considerable amount of experimental data for a wide range of metals have 
shown that FCGR in air under closure-free conditions can be reasonably 
estimated based on Young’s modulus.  A simplified fatigue curve under 
closure-free conditions is considered an upper bound for FGCR and it can 
be useful in design of engineering components to establish a safe life. 
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