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In design against fatigue with models that take defects into account, most 
attention is paid to the largest defects. Medium-sized defects, however, are 
seldom considered as potential sites of failure. In this paper, a model material is 
studied, containing a substantial proportion of medium-sized defects. The 
influence of their distributions has been investigated, using FCG computations. 
These computations were performed as post-processing of FE-results, using a 
modified Paris law. It is shown that the medium-sized defects can cause fatigue 
failure, given that there is a relatively large region of intermediate stresses. 
Further, it is shown that the statistical distributions used for describing the defects 
have a clear influence on the fatigue life of a component. The effects of removing 
the largest defects, or reducing the density of the defects, are studied as well.   
 
 

1 INTRODUCTION 
 
 
Fatigue is a common failure mode in engineering. Traditionally, design against 
fatigue is based on extraction of stress cycles from a complex loading history 
which are then compared to the fatigue limit of the material. Fatigue failure is 
usually due to defects (inclusions, voids etc.) present in the material. This means 
that methods that take the defects into consideration should be used, in order to 
refine the description of the fatigue failure. Murakami [1] has studied the 
influence from defects. Since there is a vast amount of defects with different sizes 
present in a structure, statistical distributions have to be used for characterization 
of the defect size. 
 
In many papers, [2] for example, all attention is paid to the largest defect present 
in a structure. Here, instead, all defects are considered important. Two methods of 
quality control can be envisioned when dealing with defects. The first one is to 
reduce the number of defects in the material, which is herein done by reducing the 
number of defects per unit volume (i.e. the defect density). The second method is 
only to remove the largest defects present, which can be done using a quality 
control. If the defects are completely removed above a particular size, the defect 
size distribution will be truncated. The goal of this paper is to investigate the 
effect of; i) reducing the density of defects with the same size distribution, ii) 
truncate the size distribution, with the same density of defects. 
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2 CHARACTERIZATION OF DEFECTS 
 
 
Several methods are used for characterizing defects, as described in [3]. The 
inclusion size data used here are based on unpublished data by Barsoum. The 
observed cumulative distribution function (CDF) is shown in Figure 1. Also, a 
small plot shows the observed probability density function (PDF). It can be noted 
that the defect size distribution is a consequence of two types of defects which 
lead to two maxima that are partially overlapping. There is a local peak at about 
2.2 μm and another one at about 6 μm. The data are taken from a low-alloy steel 
and will be used in this study of a model material. The details of the observed 
defect size distribution can not be carried over to the fatigue crack growth 
simulations. Instead standardized statistical distributions are used for describing 
the defect size data and the following distributions are used here: Generalized 
Extreme Value (GEV) distribution, Generalized Pareto distribution (GP), 
exponential distribution, normal distribution and lognormal distribution.  
 
 

 
Figure 1. Different distributions fitted to the defect size data from Barsoum. 
 
 
In Figure 1, the distributions mentioned above have been fitted to the defect size 
data. The fitting was performed using MATLAB’s in-built distribution fitting 
functions. The dash-dotted curve starting at 14 μm indicates the Peak Over 
Threshold (POT) method, [4], which emphasizes on the largest defects present in 
the structure. The vertical dash-dotted line indicates the threshold limit between 
medium-sized and large defects, where large defects have values larger than the 
threshold and medium-sized smaller. The value 14 μm is chosen so that 95 % of 
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the observed data is below this value. It should be noted that the exponential, 
lognormal and GP distributions describe this type of defect size distribution 
poorly. The GEV and normal distributions describe the observed CDF best. 
Obviously the POT method describes the defect size distribution very poorly for 
the medium-sized defects, which is logical since this method emphasizes the 
largest defects present.   
 
The defect size distributions have been truncated as well, both using upper-limit 
and lower-limit truncation. When used, the upper truncation limit was set to 14 
μm, the threshold between medium-sized and large defects. For some 
distributions a lower limit truncation is set to zero. The lower limit truncation had 
to be used for the GEV and normal distribution; otherwise these distributions can 
generate negative defect radii. The defect size distribution is a consequence of the 
manufacturing process and the chemical composition of the material. If a 
subsequent quality check is performed, large defects can be eliminated i.e. the 
distribution is truncated. Of course if the density function is integrated between its 
lower and upper limit, the integration should be equal to one. A complete 
truncation like this might not be very realistic, but the analysis will show if it 
decreases the scatter in the fatigue life and increases life. 
 
Another defect characteristic is the defect density, the number of defects per unit 
volume, which governs the total number of defects present in a structure. Here 
two defect densities are used; the very low density of 2 defects/mm3 and the low 
value of 20 defects/mm3. 
 
 

3 SIMULATIONS 
 
 
The specimen, Figure 2, was first analyzed in ABAQUS and then the results were 
post processed in the defect based fatigue post processor P•FAT. For the 
theoretical background of P•FAT see [5] and [6]. The mesh was checked for 
convergence and the elements used were eight noded elements with reduced 
integration (C3D8R), see [7]. 
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Specimen dimensions 
a = 25 [mm] 
d = 4 [mm] 
r = 4 [mm] 
w = 40 [mm] 
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Figure 2. FE-model of the specimen used in the simulations, the thickness of the 
specimen (which is equal to 5 mm) is not shown. 
 
 
The stress amplitude was approximately twice the fatigue limit after converting 
the fatigue limit to the stress ratio used in the simulations, which was R = -1. The 
conversion of the fatigue limit was done using a Walker correction. This high 
stress amplitude obviously gives short fatigue lives. In the FE-simulations a linear 
elastic material model was used. After the FE-simulations, the results were post 
processed in P•FAT. The option ‘random defect approach’ was used, which uses 
some aspects of probability theory. In P•FAT, all defects are initially treated as 
circular embedded cracks perpendicular to the maximum principal stress 
direction. The first step is to determine the number of defects per finite element, 
which is done by using a Poisson process (with the intensity equal to the defect 
density). This is followed by the determination of the defect location, which is 
done by letting the location be described by a uniform distribution. Here, three 
uniform distributions are used, since the specimen is in 3D (one distribution per 
direction). After determining the number of defects in each finite element and the 
location of the defects, the size is to be determined. This is done by letting the 
defect size be described by one of the distributions presented previously; hence 
each defect will have different size. When the characteristics of the defects have 
been determined, the Kitagawa-Takashi diagram, [8], is used for determining if 
the defect (crack) is potentially life-controlling or not, i.e. if da/dN > 0 in Eq. (1) 
below. The next step is to determine the initial crack growth rate of the defect, 
since only the defect with the highest initial crack growth rate will be used in the 
fatigue life computation. The procedure explained above is repeated n times, thus 
n life controlling defects are generated. When these defects have been generated, 
the fatigue life can be calculated and n defects yield the fatigue life distribution at 
a constant stress level.  The reason for choosing the defect with the highest initial 
crack growth rate is that this defect generally turns out to be controlling the life of 
the component, [5] and [6]. The fatigue crack growth rate is computed from 
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In Eq. (1), C is the crack growth constant, ΔKth is a threshold stress intensity 
factor range, m is the crack growth exponent, Δσ is the stress range, ΔσA is the 
fatigue limit and ΔK is the stress intensity factor range. The values of these 
parameters are taken from [9] and presented in Table 1. 
 
 
Table 1 Material properties used in the P•FAT simulations. 
Fatigue limit 
(ΔσA) 

Crack growth 
coefficient (C)  

Crack growth 
exponent (m) 

SIF threshold 
(ΔKth) 

1100 [MPa] 2.08*10-14 [MPa,m] 4.8 [-] 4.4 [ mMPa ] 
 
 
The crack growth constant, C, the threshold stress intensity factor range, ΔKth, and 
the fatigue limit, ΔσA are determined using R = 0. After this, these material 
properties are corrected to match the load ratio used in the simulation, which is R 
= -1, using the Walker correction γ = 0.78. It is assumed that the crack growth 
exponent, m, is constant and thus does not change for different load ratios. 
  
The material data required for the present investigation is currently not available. 
Therefore, a model material is studied with fatigue properties taken from a 
bearing steel and the defect data taken from a low-alloy steel. 
 
 

4 RESULTS 
 
 
4.1 Different statistical distributions 
 
 
Several distributions, presented in Section 2, have been used to describe the defect 
size.  Here, the choice of statistical distribution is investigated with regards to 
fatigue life and selection of the critical defect. In Table 2 the outcome of 100 
simulations are shown. Depending on which distribution is used, different defects 
will be critical; either medium-sized or large. It can be seen that the normal 
distribution has the most medium-sized defects that lead to failure, followed by 
the GEV distribution. For the exponential distribution and the GP distribution 
using the POT method no medium-sized defects led to failure.  
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Table 2 Effect of defect density and different size distribution type on critical 
crack size. 

20 defects/mm3  
(Low density) Defect density 2 defects/mm3  

(Very low density) 
Medium-sized Large Distribution Medium-sized Large 

0 100 GEV 22 78 
0 100 GP 3 97 
0 100 GP using POT method 0 100 
0 100 Exponential 0 100 
0 100 Normal 32 68 
0 100 Lognormal 1 99 

 
 
In Figure 1 it can be seen that some size distributions are more prone to yield a 
fatigue failure from large defects. These distributions are the ones having larger 
portion of probability for large defects (i.e. lognormal, GP and exponential). This 
is analogous with the results presented in Table 2. When using the POT method, 
the threshold is set to the threshold limit, and thus it should not be possible to get 
fatigue failure from medium-sized defects.  

 

 
Figure 3. Fatigue life distribution for the different defect size distributions. A 
lognormal scale is used.  
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In Figure 3 the effect on the fatigue life distribution of using different defect size 
distributions is presented. The straight lines indicate data fitted to a lognormal 
distribution, since the fatigue life at a constant stress level usually is assumed to 
be described by a lognormal distribution. One hundred simulations are performed 
for each different defect size distribution. It can be seen that fatigue lives follow 
the distribution well on an interval from around 0.20 to 0.95. In the tail regions 
i.e. low and high probabilities, there is large discrepancy between the fitted 
lognormal distribution and the defect size distributions, especially in the lower tail 
region. It is remarkable that there is such a large difference between the fatigue 
lives for the different distributions, especially in the lower tail region. 
 
 
4.2 Effect of truncation of the statistical distribution 
 
 
As mentioned previously, truncation can be used as quality measure. This means 
that large defects are removed; hence the defect size distribution will be truncated. 
The upper truncation limit here is 14 μm. If the defect size distributions are 
truncated at the upper truncation and plotted using a lognormal scale, the results 
shown in Figure 4 are obtained. 
 
 

 
Figure 4. Comparison of fatigue life distributions for original and truncated data. 
A lognormal scale is used. Filled lines indicate non-truncated distributions and 
dashed lines indicate truncated size distributions.  
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In Figure 4 a comparison between truncated and original data is presented. One 
hundred simulations are performed for each different defect size distribution (both 
original and truncated). It can be seen that the slopes for the truncated 
distributions are higher. This slope is the reciprocal of the standard deviation. 
Hence, the standard deviation of the fatigue life for the truncated distributions is 
smaller. Also, the total range of the different fatigue lives is about twice as large 
for the original distributions compared to the truncated distributions. This means 
that fatigue life is improved and the scatter is decreased, when using truncation. 
This can also be seen by looking at the slopes for the different distributions; the 
truncated distributions have a higher slope compared to the original distributions. 
  
 

5 SUMMARY AND CONCLUSIONS 
 
 
In this paper it has been shown that not only the largest defects lead to fatigue 
failure of a component. Also, medium-sized defects can lead to fatigue failure 
given that there is a relatively large region of intermediate stress present. This 
may be found between stress-raisers (notches for example). In order to get fatigue 
failure from medium-sized defects, a multiple-notch specimen, Figure 2, had to be 
used. The notches in this specimen were so close that they interacted. For the 
FCG computations a modified Paris law was used. The FCG computations were 
performed using the post processor P•FAT.   
 
The effect of describing the real defect size with different statistical distributions 
is presented in Figure 3. From Figure 1, it is seen that the GEV and the Normal 
distribution agree best with the observed CDF. Hence, in Figure 3, these 
distributions are expected to describe also the fatigue life of the component best. 
As can be seen in Figure 3, the GEV and the Normal distributions agree well with 
each other over a wide range of probabilities. In the tail region of low probability, 
there is a large difference between the different distributions. This region is of 
particular interest in fatigue design that aims for high reliability. It is therefore of 
utmost importance to use an appropriate statistical description of the defect size in 
simulations based on defect tolerance. A general result is that the lognormal 
distribution describes the fatigue life distribution poorly. When using a lognormal 
defect size distribution the discrepancy with the fatigue life distribution in the tail 
regions is large. This indicates that the fatigue life distribution does not only 
depend on the defect size distribution but also the stress distribution (i.e. the 
specimen geometry). It can also be observed that the exponential and lognormal 
distributions display a larger scatter than the other distributions (smaller slope 
than the other distributions). This might be explained by the fact that these 
distributions had zero medium-sized defects whereas the normal distribution, 
which has the largest slope, had the most medium-sized defects that lead to 
fatigue failure. 
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In Figure 4 the effect of truncating the defect size distributions was presented, 
where the fatigue lives where fitted to a lognormal distribution. It can be noted 
that the range of fatigue lives decreased with a factor of 2 when truncation was 
used. Further, slopes of the different fitted distributions, i.e. the standard 
deviation, and the mean values were almost the same. This is logical since the 
distribution function has to be 1 at the distinction limit and 0 for crack size equal 
to zero. Hence, the characteristics of the different distributions can only be seen 
on a certain interval and no tail behavior is permitted. If the Coefficient Of 
Variation (COV), the ratio between the standard deviation and the mean value of 
a normal distribution, was determined for the different distributions it could be 
noted that the relative difference between the different fatigue life distributions 
was less than 10 %. 
 
In this paper the effect of medium-sized defects has been investigated. It has been 
shown that medium-sized defects, defined here as defect with a radius smaller 
than 14 μm, can also lead to fatigue failure given that there is a sufficiently large 
region with intermediate stresses present. Further, the distribution used for 
describing the defect size plays a decisive role for the fatigue life. However, it 
was seen that the fatigue life does not only depend on the defect size distribution. 
When the number of defects per unit volume was increased with a factor of 10, 
there were no medium-sized defects that led to fatigue failure. This is shown in 
Table 2.  When truncating the defect size distribution, the scatter decreased 
drastically and the difference between the different life distributions was almost 
negligible. Hence, if truncation is used as a quality measure it will decrease the 
scatter in fatigue life as well as increase the average fatigue life.  
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