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tFatigue 
ra
k propagation is studied in 2D latti
e spring models in astripe geometry under 
onstant displa
ement boundary 
onditions, formultiple latti
e geometries. The work is done in the presen
e of plasti
ityand in the absen
e of dynami
 e�e
ts. Plasti
ity is modeled by 
hangingthe o�set of the springs, in su
h a way as to keep the maximum for
ebelow a 
ertain value. The springs fail if the total deformation surpassessome pres
ribed threshold. The results are 
ompatible with the Parislaw. The e�e
ts of overloading and small 
ra
ks are reprodu
ed. Auniversal behavior for ea
h kind of latti
e is obtained by studying therelation between the breaking and plasti
ity thresholds.1 Introdu
tionThe aim of this work is to numeri
ally study the pro
ess of fatigue 
ra
k ad-van
e [1℄ in the presen
e of 
y
li
 loads and plasti
ity e�e
ts.The essen
e of
y
li
 plasti
ity 
an be des
ribed as follows: when an in
reasing load is appliedto a 
ra
k the material �rst deforms elasti
ally, until plasti
 deformation even-tually o

urs at the 
ra
k tip. As the load in
reases further, the 
ra
k starts toelongate. However, due to the e�e
t of the plasti
 region, this elongation doesnot produ
e the immediate rupture of the sample, instead the 
ra
k elonga-tion is a fun
tion of the applied load. Upon unloading the plasti
 deformationmostly reverts, leaving the 
ra
k ready to start a new elongation 
y
le in thenext loading.It is important to emphasize that the pro
ess being studied is fully deter-ministi
, and that the 
ra
k advan
e is a 
onsequen
e of 
y
ling. Other ap-proa
hes to fatigue 
ra
k advan
e, su
h as that in Ref. [2℄, fo
us on sto
hasti
1



e�e
ts in the material properties, but this is not of immediate interest for usin this work.The material is modelled by a 
olle
tion of point masses joined by springs.The springs will be given a deterministi
 plasti
 behavior that will be respon-sible for the 
y
le fatigue propagation. Dynami
 e�e
ts (su
h as dependen
eson the time the load is applied) will not be 
onsidered. With these minimalinputs propagation a

ording to a Paris law is obtained, and the overloadingand small 
ra
k e�e
ts are observed[1℄.2 MethodsCra
ks in two dimensional spring-latti
e samples are simulated using a modeIII 
on�guration. The model 
onsists of an arrange of point parti
les linked bysprings in a semi in�nite stripe. The for
e exerted by a spring is F = k(x−x0),where x is distan
e between the masses atta
hed to it, and x0 is the springrest length. Plasti
ity is modeled by 
hanging x0 in order to keep the for
ebelow some threshold |F | < kunl. An example of the evolution of F as x is
hanged in a pres
ribed manner is shown in Fig. [1℄. Note that the evolutionis deterministi
, but the for
e is not an univo
ous fun
tion of x.
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 behavior of the springs. In a) the for
e of a spring when
x in
reases and then de
reases is shown s
hemati
ally, and in b) the timeevolution of for
e, length (x) and rest length (x0) is indi
ated. Note thatwhen the for
e rea
hes its maximum, x0 starts to 
hange.Springs lo
ated in the middle of the stripe will fail if they are stret
hedabove some quantity ubk, i.e., if |x| > ubk. This will for
e the propagationof the 
ra
k along the 
entral line of the stripe. This models, for instan
e,propagation along a weak interfa
e between two materials.Results for di�erent latti
es are 
ompared in Fig. [2℄: square (in this 
aseplasti
ity is introdu
ed only on horizontal springs), rhomboidal (whi
h is asquare latti
e rotated 45o, plasti
ity in all springs) and triangular (plasti
ityin all springs). Results for a square latti
e in whi
h plasti
ity is introdu
ednot in spring variables but in element variables are also shown. The advantage2



of this last implementation is that plasti
ity is essentially isotropi
, and theresults are expe
ted to 
ompare better with experimental data in 
ontinuousmaterials.The dynami
s is typi
ally solved in the following way: �xing the 
ondi-tions at the borders the model is evolved until equilibrium is rea
hed. In thissituation the boundary 
ondition is 
hanged a small step and the pro
ess isrepeated. Some slight variations of this pro
edure are used in parti
ular 
asesto speed up simulations. These variations are made only for 
omputationaladvantage, and do not have any physi
al 
onsequen
e.2.1 ResultsFirst of all the stru
ture of the plasti
 region in a loaded 
ra
k at rest isanalyzed, for ea
h of the des
ribed latti
es. For rhomboidal and square latti
es(Figs. [2a℄ and [2b℄) the plasti
 region 
onsists of only two strings of springs. In
ontrast, triangular latti
e (Fig. [2c℄) shows a 
ontinuum region where springsenter the nonlinear region, as in the 
ase of the square latti
e with plasti
ityper elements (Fig. [2d℄).a) b)

) d)
Figure 2: Plasti
ity in di�erent latti
es with a semi in�nite 
ra
k under load(without propagation). a) square, b) rhomboidal, c) triangular, and d) squarewith plasti
ity per elements. Highlighted springs (or elements in d ) are thosein whi
h plasti
 deformation is not zero. In a) and b) only one 
olumn ofsprings enters the plasti
 region while in c) and d) there is a 
ontinuum plasti
region.When 
ra
ks are allowed to elongate, the properties of di�erent latti
es arefound to be di�erent. Cal
ulations are referred to the nominal values of the3



stress intensity fa
tor K attained at the 
ra
k tip, as obtained from L.E.F.M.There are some important referen
e values for K: Knl is the stress intensityfa
tor at whi
h the �rst spring enters the plasti
 regime, Kmin is the minimumvalue that is ne
essary to apply over a sample to observe the breaking of asingle spring and Kmax is the value beyond whi
h unstable, abrupt fra
turingof the sample is observed. Fatigue 
al
ulations are made by 
y
ling the samplebetween K1 = 0 and some K2. It is 
lear that to have a non trivial e�e
t K2must satisfy Kmin < K2 < Kmax, and then the largest possible range between
Kmin and Kmax will be the most appropriate situation for a good modeling.The rhomboidal latti
e presented the greatest range of Kmax/Kmin, 
omparedto other latti
es. This property is attributed to the protruding of the plasti
region ahead of the 
ra
k, redu
ing the stress at the 
ra
k tip and hen
ein
reasing the shielding e�e
t. This latti
e is 
hosen to look for further e�e
ts.In Fig. [3℄ the result of 
ra
k advan
e per 
y
le as a fun
tion of K2 isplotted (with K1 = 0). Ea
h point shown 
orresponds to the equilibriumadvan
e at the same K2. The system has 80 horizontal rows of springs and
160 verti
al 
olumns. Here ubk/unl = 3 is used. The 
ra
k starts propagatingat K2 = Kmin ∼ 2.2Knl with fra
tional propagation (meaning less than onespring broken per 
y
le, on average). The propagation rate in
reases until
Kmax ∼ 4.5Knl, where the 
ra
k elongates up to 30 springs per 
y
le. Asshown in the inset, there is a wide range in whi
h a Paris relation N ∼ α(K2)

mmay be written, with an exponent m ≃ 4.7.The relation between K2, the size of the plasti
 region and the parameterrelation ubk/unl will be dis
ussed now. In Fig. [4℄ results similar to the previoussimulations are shown, but also observing the size of the plasti
 region as afun
tion of K2 and of the 
ra
k advan
e per 
y
le. We de�ne the plasti
region size as the largest distan
e from the 
ra
k where plasti
 springs stillappear, measured in latti
e unities. A strong dependen
e of the plasti
 regionsize as a fun
tion of K2 is seen. It is also seen that the size of the plasti
region is limited by the value of ubk/unl. Observe that the propagating range
Kmax/Kmin in
reases as ubk/unl in
reases.The value obtained for the relation Kmax/Kmin in Fig. [3℄ is of order ∼ 2.Fatigue experiments, in 
omparison, show several orders of magnitude in thisrelation. The reason for this small range in the present simulations is the sizeof the system used. In Fig. [4℄ it is shown that in
reasing the size of the systemand also the relation ubk/unl, the value of Kmax/Kmin in
reases. This is dueto the fa
t that the maximum rea
hable size of the plasti
 region depends onthe relation ubk/unl, as it 
an also be seen in the �gure. In turn, to be able touse larger values of ubk/unl larger systems are needed be
ause of the proximityto the borders. In the present simulations ubk/unl <∼ 5. Experimental valuesof ubk/unl are expe
ted to be of order of 100, explaining the dis
repan
y.
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urve for a rhomboidal latti
e: number of broken springs per
y
le (N) as a fun
tion of K2 (with K1 = 0). The exponent plotted in the log-log inset is 4.7. The system has 80 horizontal rows of springs, with parameters
ubk/unl = 3. Knl is the stress intensity fa
tor at whi
h the �rst spring entersthe plasti
 regime.OverloadingOne of the most interesting e�e
ts reprodu
ed with the present modelling isthe so 
alled overloading e�e
t. Let us a 
ra
k propagating by the fatigueme
hanism, elongating n0 latti
e units per 
y
le, under an alternate load be-tween 0 and K2. If one of the 
y
les is made between 0 and αK2 with α > 1,the advan
e at that 
y
le n′

0
is larger: n′

0
> n0. However, the larger plasti
region generated in this 
y
le shields the 
ra
k advan
e in the following 
y
les,namely n < n0 after the overload. The global integrated e�e
t is a net retar-dation of the propagation. The shielding may be su
h that the propagation is
ompletely stopped.In �gure Fig. [5℄ we show the e�e
t of four overloading 
y
les with α =

1.16, 1.27, 1.32 and 1.39. During stable 
y
ling the 
ra
k advan
es n0 = 2.5springs per 
y
le (alternating between n0 = 2 and n0 = 3 springs periodi
ally).At the overloading 
y
le the 
ra
k elongates a larger quantity, but smallerelongation o

urs in 
onse
utive 
y
les. Finally, when the stationary situationis re
overed, a net retardation is seen. For α = 1.39 the shielding is su
h thatthe 
ra
k 
ompletely stops after the overloading 
y
le. In the inset to Fig. [5℄the nonlinear springs for α = 1.27 are highlighted. It 
an be seen that theplasti
 region of the overload 
y
le is bigger, but after that the plasti
 region5
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0Figure 4: Results as in previous �gure, showing the relation between K2, thesize of the plasti
 region, the parameter relation ubk/unl and the advan
e per
y
le N . The plasti
 region size seems to be a fun
tion of K2 and it is limitedby the value of ubk/unl. The system has 160 horizontal rows of springs.size in
reases slowly to the stable 
y
ling 
on�guration.Small Cra
ksAnother robust e�e
t observed in experimental fatigue propagation is the in-tera
tion between the plasti
 regions of both tips in a short 
ra
k. This in-tera
tion diminishes the shielding e�e
t of the plasti
 region and produ
es aproportionally larger fatigue advan
e for small 
ra
ks than for larger ones.In simulations in small systems a single broken spring is usually a nonnegligible fra
tion of the total 
ra
k length. This produ
es that when studyingthe small 
ra
k e�e
t, a uniform fatigue advan
e is very di�
ult to a
hieve. Wethus measure an alternative quantity that provides an equivalent information,namely the length of the most stret
hed unbroken spring as a fun
tion ofthe stress intensity fa
tor in a single stret
hing simulation. This is done fordi�erent values of the original 
ra
k length.In Fig. [6℄ the length of the most stret
hed spring is plotted as a fun
tionof the stress intensity fa
tor K. When the system does not develop plasti
ity(K < Knl) the 
urves for di�erent length 
oin
ide, as they should. When thesprings start to explore the plasti
 regime, the results begin to di�er. Springsat the tip in shorter 
ra
ks are elongated more than for longer 
ra
ks. This inturn makes them fail sooner than for longer 
ra
ks.
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-40Figure 5: Number of broken springs N in fatigue propagation showing over-loading e�e
t, for α = 1.16, 1.27, 1.32 and 1.39. The plasti
 shielding 
reatedby a larger 
y
le diminishes the 
ra
k advan
e in the following 
y
les, su
h thatwhen the system stabilizes the propagation is delayed. Contrary to intuitionthe e�e
t in
reases upon greater overloading, and may even stop the propa-gation. In the inset the overload 
orresponding to α = 1.27 is plotted. Thearrow shows the plasti
 zone (highlighted springs) generated by the overload.Borders proximityIn the previous se
tion the enhan
ement at fatigue propagation when thereis a limitation in the shielding of the plasti
 region was observed, and thiswas argued to represent the small 
ra
k e�e
t. Another very similar 
aseo

urs for semi in�nite 
ra
k in the middle of the stripe, for low values of thestripe width. The proximity of the borders to the plasti
 region diminishes itsshielding property, as seen on Fig. [7℄. In this �gure the 
ra
k advan
e per
y
le as a fun
tion of K2 is plotted, like in Fig. [3℄, for di�erent system sizes.When the system size is 
hanged, the nominal stress intensity fa
tor s
ales as
K ∼ δ/

√

Ny. The values of 
ra
k advan
e for di�erent system sizes agree forsmall values of K2, but di�er if K2 be
omes larger, when the plasti
 regionapproa
hes the borders.3 Con
lusionsA method to study fatigue 
ra
k propagation that fairly reprodu
es well knownexperimental e�e
ts, su
h as Paris 
urves and overloading e�e
t has been pre-7
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ra
k tips vs nominal K (proportionalto δ
√

l). Note that the smaller the 
ra
k the sooner it breaks, as shown by thearrow. Here ubk/unl = 5, the spring length is measured in units of unl and l0is the latti
e parameter.sented. The model is based on a phenomenologi
al in
orporation of plasti
ityinto a latti
e spring model. We are 
urrently working to obtain more detailedresult to make quantitative 
omparison with experiments, and to study thefatigue phenomenon in deeper detail.Referen
es[1℄ S. Suresh, Fatigue of Materials, Cambridge University Press, Cambridge(1998)[2℄ F. Kun, H.A. Carmona, J.S. Andrade, Jr., H.J. Herrmann, Universality be-hind Basquin's Law of Fatigue, Physi
al Review Letters 100 (2008) 094301-4
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k advan
e as a fun
tion of K2 in a stripe geometry for di�erentstripe widths. For a given K2 the advan
e per 
y
le is larger the smaller thestripe width. Inset: Snapshots of the system advan
ing 30 sites per 
y
le forsystem sizes Ny = 40, 60, 80. To keep the advan
ing rate as the size in
reases
K2 must also be in
reased.
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