
Fatigue rak propagation in two dimensionallattie spring modelsT.M. Guozden and E.A. JaglaFebruary 9, 2009Centro Atómio Barilohe, Comisión Naional de Energía Atómia (8400)Barilohe, Argentina AbstratFatigue rak propagation is studied in 2D lattie spring models in astripe geometry under onstant displaement boundary onditions, formultiple lattie geometries. The work is done in the presene of plastiityand in the absene of dynami e�ets. Plastiity is modeled by hangingthe o�set of the springs, in suh a way as to keep the maximum forebelow a ertain value. The springs fail if the total deformation surpassessome presribed threshold. The results are ompatible with the Parislaw. The e�ets of overloading and small raks are reprodued. Auniversal behavior for eah kind of lattie is obtained by studying therelation between the breaking and plastiity thresholds.1 IntrodutionThe aim of this work is to numerially study the proess of fatigue rak ad-vane [1℄ in the presene of yli loads and plastiity e�ets.The essene ofyli plastiity an be desribed as follows: when an inreasing load is appliedto a rak the material �rst deforms elastially, until plasti deformation even-tually ours at the rak tip. As the load inreases further, the rak starts toelongate. However, due to the e�et of the plasti region, this elongation doesnot produe the immediate rupture of the sample, instead the rak elonga-tion is a funtion of the applied load. Upon unloading the plasti deformationmostly reverts, leaving the rak ready to start a new elongation yle in thenext loading.It is important to emphasize that the proess being studied is fully deter-ministi, and that the rak advane is a onsequene of yling. Other ap-proahes to fatigue rak advane, suh as that in Ref. [2℄, fous on stohasti1



e�ets in the material properties, but this is not of immediate interest for usin this work.The material is modelled by a olletion of point masses joined by springs.The springs will be given a deterministi plasti behavior that will be respon-sible for the yle fatigue propagation. Dynami e�ets (suh as dependeneson the time the load is applied) will not be onsidered. With these minimalinputs propagation aording to a Paris law is obtained, and the overloadingand small rak e�ets are observed[1℄.2 MethodsCraks in two dimensional spring-lattie samples are simulated using a modeIII on�guration. The model onsists of an arrange of point partiles linked bysprings in a semi in�nite stripe. The fore exerted by a spring is F = k(x−x0),where x is distane between the masses attahed to it, and x0 is the springrest length. Plastiity is modeled by hanging x0 in order to keep the forebelow some threshold |F | < kunl. An example of the evolution of F as x ishanged in a presribed manner is shown in Fig. [1℄. Note that the evolutionis deterministi, but the fore is not an univoous funtion of x.
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x inreases and then dereases is shown shematially, and in b) the timeevolution of fore, length (x) and rest length (x0) is indiated. Note thatwhen the fore reahes its maximum, x0 starts to hange.Springs loated in the middle of the stripe will fail if they are strethedabove some quantity ubk, i.e., if |x| > ubk. This will fore the propagationof the rak along the entral line of the stripe. This models, for instane,propagation along a weak interfae between two materials.Results for di�erent latties are ompared in Fig. [2℄: square (in this aseplastiity is introdued only on horizontal springs), rhomboidal (whih is asquare lattie rotated 45o, plastiity in all springs) and triangular (plastiityin all springs). Results for a square lattie in whih plastiity is introduednot in spring variables but in element variables are also shown. The advantage2



of this last implementation is that plastiity is essentially isotropi, and theresults are expeted to ompare better with experimental data in ontinuousmaterials.The dynamis is typially solved in the following way: �xing the ondi-tions at the borders the model is evolved until equilibrium is reahed. In thissituation the boundary ondition is hanged a small step and the proess isrepeated. Some slight variations of this proedure are used in partiular asesto speed up simulations. These variations are made only for omputationaladvantage, and do not have any physial onsequene.2.1 ResultsFirst of all the struture of the plasti region in a loaded rak at rest isanalyzed, for eah of the desribed latties. For rhomboidal and square latties(Figs. [2a℄ and [2b℄) the plasti region onsists of only two strings of springs. Inontrast, triangular lattie (Fig. [2c℄) shows a ontinuum region where springsenter the nonlinear region, as in the ase of the square lattie with plastiityper elements (Fig. [2d℄).a) b)
) d)
Figure 2: Plastiity in di�erent latties with a semi in�nite rak under load(without propagation). a) square, b) rhomboidal, c) triangular, and d) squarewith plastiity per elements. Highlighted springs (or elements in d ) are thosein whih plasti deformation is not zero. In a) and b) only one olumn ofsprings enters the plasti region while in c) and d) there is a ontinuum plastiregion.When raks are allowed to elongate, the properties of di�erent latties arefound to be di�erent. Calulations are referred to the nominal values of the3



stress intensity fator K attained at the rak tip, as obtained from L.E.F.M.There are some important referene values for K: Knl is the stress intensityfator at whih the �rst spring enters the plasti regime, Kmin is the minimumvalue that is neessary to apply over a sample to observe the breaking of asingle spring and Kmax is the value beyond whih unstable, abrupt fraturingof the sample is observed. Fatigue alulations are made by yling the samplebetween K1 = 0 and some K2. It is lear that to have a non trivial e�et K2must satisfy Kmin < K2 < Kmax, and then the largest possible range between
Kmin and Kmax will be the most appropriate situation for a good modeling.The rhomboidal lattie presented the greatest range of Kmax/Kmin, omparedto other latties. This property is attributed to the protruding of the plastiregion ahead of the rak, reduing the stress at the rak tip and heneinreasing the shielding e�et. This lattie is hosen to look for further e�ets.In Fig. [3℄ the result of rak advane per yle as a funtion of K2 isplotted (with K1 = 0). Eah point shown orresponds to the equilibriumadvane at the same K2. The system has 80 horizontal rows of springs and
160 vertial olumns. Here ubk/unl = 3 is used. The rak starts propagatingat K2 = Kmin ∼ 2.2Knl with frational propagation (meaning less than onespring broken per yle, on average). The propagation rate inreases until
Kmax ∼ 4.5Knl, where the rak elongates up to 30 springs per yle. Asshown in the inset, there is a wide range in whih a Paris relation N ∼ α(K2)

mmay be written, with an exponent m ≃ 4.7.The relation between K2, the size of the plasti region and the parameterrelation ubk/unl will be disussed now. In Fig. [4℄ results similar to the previoussimulations are shown, but also observing the size of the plasti region as afuntion of K2 and of the rak advane per yle. We de�ne the plastiregion size as the largest distane from the rak where plasti springs stillappear, measured in lattie unities. A strong dependene of the plasti regionsize as a funtion of K2 is seen. It is also seen that the size of the plastiregion is limited by the value of ubk/unl. Observe that the propagating range
Kmax/Kmin inreases as ubk/unl inreases.The value obtained for the relation Kmax/Kmin in Fig. [3℄ is of order ∼ 2.Fatigue experiments, in omparison, show several orders of magnitude in thisrelation. The reason for this small range in the present simulations is the sizeof the system used. In Fig. [4℄ it is shown that inreasing the size of the systemand also the relation ubk/unl, the value of Kmax/Kmin inreases. This is dueto the fat that the maximum reahable size of the plasti region depends onthe relation ubk/unl, as it an also be seen in the �gure. In turn, to be able touse larger values of ubk/unl larger systems are needed beause of the proximityto the borders. In the present simulations ubk/unl <∼ 5. Experimental valuesof ubk/unl are expeted to be of order of 100, explaining the disrepany.
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ubk/unl = 3. Knl is the stress intensity fator at whih the �rst spring entersthe plasti regime.OverloadingOne of the most interesting e�ets reprodued with the present modelling isthe so alled overloading e�et. Let us a rak propagating by the fatiguemehanism, elongating n0 lattie units per yle, under an alternate load be-tween 0 and K2. If one of the yles is made between 0 and αK2 with α > 1,the advane at that yle n′

0
is larger: n′

0
> n0. However, the larger plastiregion generated in this yle shields the rak advane in the following yles,namely n < n0 after the overload. The global integrated e�et is a net retar-dation of the propagation. The shielding may be suh that the propagation isompletely stopped.In �gure Fig. [5℄ we show the e�et of four overloading yles with α =

1.16, 1.27, 1.32 and 1.39. During stable yling the rak advanes n0 = 2.5springs per yle (alternating between n0 = 2 and n0 = 3 springs periodially).At the overloading yle the rak elongates a larger quantity, but smallerelongation ours in onseutive yles. Finally, when the stationary situationis reovered, a net retardation is seen. For α = 1.39 the shielding is suh thatthe rak ompletely stops after the overloading yle. In the inset to Fig. [5℄the nonlinear springs for α = 1.27 are highlighted. It an be seen that theplasti region of the overload yle is bigger, but after that the plasti region5



N

p
la

st
ic

re
gi

on
si

ze

120100806040200

50

40

30

20

10

0

K2/Knl

p
la

st
ic

re
gi

on
si

ze

65432

50

40

30

20

10

0

ubk/unl = 3.00

ubk/unl = 2.75

ubk/unl = 2.50

ubk/unl = 2.25

K2/Knl

N

65432

120
100
80
60
40
20
0Figure 4: Results as in previous �gure, showing the relation between K2, thesize of the plasti region, the parameter relation ubk/unl and the advane peryle N . The plasti region size seems to be a funtion of K2 and it is limitedby the value of ubk/unl. The system has 160 horizontal rows of springs.size inreases slowly to the stable yling on�guration.Small CraksAnother robust e�et observed in experimental fatigue propagation is the in-teration between the plasti regions of both tips in a short rak. This in-teration diminishes the shielding e�et of the plasti region and produes aproportionally larger fatigue advane for small raks than for larger ones.In simulations in small systems a single broken spring is usually a nonnegligible fration of the total rak length. This produes that when studyingthe small rak e�et, a uniform fatigue advane is very di�ult to ahieve. Wethus measure an alternative quantity that provides an equivalent information,namely the length of the most strethed unbroken spring as a funtion ofthe stress intensity fator in a single strething simulation. This is done fordi�erent values of the original rak length.In Fig. [6℄ the length of the most strethed spring is plotted as a funtionof the stress intensity fator K. When the system does not develop plastiity(K < Knl) the urves for di�erent length oinide, as they should. When thesprings start to explore the plasti regime, the results begin to di�er. Springsat the tip in shorter raks are elongated more than for longer raks. This inturn makes them fail sooner than for longer raks.
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K ∼ δ/

√

Ny. The values of rak advane for di�erent system sizes agree forsmall values of K2, but di�er if K2 beomes larger, when the plasti regionapproahes the borders.3 ConlusionsA method to study fatigue rak propagation that fairly reprodues well knownexperimental e�ets, suh as Paris urves and overloading e�et has been pre-7
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