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Abstract

Fatigue crack propagation is studied in 2D lattice spring models in a
stripe geometry under constant displacement boundary conditions, for
multiple lattice geometries. The work is done in the presence of plasticity
and in the absence of dynamic effects. Plasticity is modeled by changing
the offset of the springs, in such a way as to keep the maximum force
below a certain value. The springs fail if the total deformation surpasses
some prescribed threshold. The results are compatible with the Paris
law. The effects of overloading and small cracks are reproduced. A
universal behavior for each kind of lattice is obtained by studying the
relation between the breaking and plasticity thresholds.

1 Introduction

The aim of this work is to numerically study the process of fatigue crack ad-
vance [1| in the presence of cyclic loads and plasticity effects.The essence of
cyclic plasticity can be described as follows: when an increasing load is applied
to a crack the material first deforms elastically, until plastic deformation even-
tually occurs at the crack tip. As the load increases further, the crack starts to
elongate. However, due to the effect of the plastic region, this elongation does
not produce the immediate rupture of the sample, instead the crack elonga-
tion is a function of the applied load. Upon unloading the plastic deformation
mostly reverts, leaving the crack ready to start a new elongation cycle in the
next loading.

It is important to emphasize that the process being studied is fully deter-
ministic, and that the crack advance is a consequence of cycling. Other ap-
proaches to fatigue crack advance, such as that in Ref. [2], focus on stochastic



effects in the material properties, but this is not of immediate interest for us
in this work.

The material is modelled by a collection of point masses joined by springs.
The springs will be given a deterministic plastic behavior that will be respon-
sible for the cycle fatigue propagation. Dynamic effects (such as dependences
on the time the load is applied) will not be considered. With these minimal
inputs propagation according to a Paris law is obtained, and the overloading
and small crack effects are observed|[1].

2 Methods

Cracks in two dimensional spring-lattice samples are simulated using a mode
IIT configuration. The model consists of an arrange of point particles linked by
springs in a semi infinite stripe. The force exerted by a spring is F' = k(z—x),
where x is distance between the masses attached to it, and z( is the spring
rest length. Plasticity is modeled by changing xy in order to keep the force
below some threshold |F| < ku,;. An example of the evolution of F' as x is
changed in a prescribed manner is shown in Fig. [1]. Note that the evolution
is deterministic, but the force is not an univocous function of z.

a) 1 b) time

Figure 1: Plastic behavior of the springs. In a) the force of a spring when
x increases and then decreases is shown schematically, and in b) the time
evolution of force, length (z) and rest length (x) is indicated. Note that
when the force reaches its maximum, x, starts to change.

Springs located in the middle of the stripe will fail if they are stretched
above some quantity wup, i.e., if || > wy. This will force the propagation
of the crack along the central line of the stripe. This models, for instance,
propagation along a weak interface between two materials.

Results for different lattices are compared in Fig. [2]: square (in this case
plasticity is introduced only on horizontal springs), rhomboidal (which is a
square lattice rotated 45°, plasticity in all springs) and triangular (plasticity
in all springs). Results for a square lattice in which plasticity is introduced
not in spring variables but in element variables are also shown. The advantage



of this last implementation is that plasticity is essentially isotropic, and the
results are expected to compare better with experimental data in continuous
materials.

The dynamics is typically solved in the following way: fixing the condi-
tions at the borders the model is evolved until equilibrium is reached. In this
situation the boundary condition is changed a small step and the process is
repeated. Some slight variations of this procedure are used in particular cases
to speed up simulations. These variations are made only for computational
advantage, and do not have any physical consequence.

2.1 Results

First of all the structure of the plastic region in a loaded crack at rest is
analyzed, for each of the described lattices. For rhomboidal and square lattices
(Figs. [2a] and [2b]) the plastic region consists of only two strings of springs. In
contrast, triangular lattice (Fig. [2¢]|) shows a continuum region where springs
enter the nonlinear region, as in the case of the square lattice with plasticity
per elements (Fig. [2d]).

a) : b)

Figure 2: Plasticity in different lattices with a semi infinite crack under load
(without propagation). a) square, b) rhomboidal, ¢) triangular, and d) square
with plasticity per elements. Highlighted springs (or elements in d ) are those
in which plastic deformation is not zero. In a) and b) only one column of
springs enters the plastic region while in ¢) and d) there is a continuum plastic
region.

When cracks are allowed to elongate, the properties of different lattices are
found to be different. Calculations are referred to the nominal values of the



stress intensity factor K attained at the crack tip, as obtained from L.E.F.M.
There are some important reference values for K: K, is the stress intensity
factor at which the first spring enters the plastic regime, K,,;, is the minimum
value that is necessary to apply over a sample to observe the breaking of a
single spring and K,,,, is the value beyond which unstable, abrupt fracturing
of the sample is observed. Fatigue calculations are made by cycling the sample
between K; = 0 and some K. It is clear that to have a non trivial effect K5
must satisfy K., < Ko < K., and then the largest possible range between
K, and K4, will be the most appropriate situation for a good modeling.
The rhomboidal lattice presented the greatest range of K4,/ Kinin, compared
to other lattices. This property is attributed to the protruding of the plastic
region ahead of the crack, reducing the stress at the crack tip and hence
increasing the shielding effect. This lattice is chosen to look for further effects.

In Fig. [3] the result of crack advance per cycle as a function of K, is
plotted (with K; = 0). Each point shown corresponds to the equilibrium
advance at the same K,. The system has 80 horizontal rows of springs and
160 vertical columns. Here wy/u,; = 3 is used. The crack starts propagating
at Ky = K ~ 2.2K,,; with fractional propagation (meaning less than one
spring broken per cycle, on average). The propagation rate increases until
Kipae ~ 4.5K,;, where the crack elongates up to 30 springs per cycle. As
shown in the inset, there is a wide range in which a Paris relation N ~ a(K3)™
may be written, with an exponent m ~ 4.7.

The relation between K5, the size of the plastic region and the parameter
relation wupy /u,; will be discussed now. In Fig. [4] results similar to the previous
simulations are shown, but also observing the size of the plastic region as a
function of K, and of the crack advance per cycle. We define the plastic
region size as the largest distance from the crack where plastic springs still
appear, measured in lattice unities. A strong dependence of the plastic region
size as a function of K5 is seen. It is also seen that the size of the plastic
region is limited by the value of wuy/u,. Observe that the propagating range
Kpnae | Kmin increases as upy /u,; increases.

The value obtained for the relation K4/ K, in Fig. [3] is of order ~ 2.
Fatigue experiments, in comparison, show several orders of magnitude in this
relation. The reason for this small range in the present simulations is the size
of the system used. In Fig. [4] it is shown that increasing the size of the system
and also the relation uy/u,;, the value of K,/ Kpnin increases. This is due
to the fact that the maximum reachable size of the plastic region depends on
the relation wy/uy,, as it can also be seen in the figure. In turn, to be able to
use larger values of uy/uy, larger systems are needed because of the proximity
to the borders. In the present simulations wuy/u,; <~ 5. Experimental values
of upy /uy are expected to be of order of 100, explaining the discrepancy.
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Figure 3: Paris curve for a rhomboidal lattice: number of broken springs per
cycle (N) as a function of K5 (with K7 = 0). The exponent plotted in the log-
log inset is 4.7. The system has 80 horizontal rows of springs, with parameters
Upk/Un; = 3. Ky is the stress intensity factor at which the first spring enters
the plastic regime.

Overloading

One of the most interesting effects reproduced with the present modelling is
the so called overloading effect. Let us a crack propagating by the fatigue
mechanism, elongating ng lattice units per cycle, under an alternate load be-
tween 0 and K5. If one of the cycles is made between 0 and a Ky with a > 1,
the advance at that cycle ny is larger: ny > ng. However, the larger plastic
region generated in this cycle shields the crack advance in the following cycles,
namely n < ng after the overload. The global integrated effect is a net retar-
dation of the propagation. The shielding may be such that the propagation is
completely stopped.

In figure Fig. [5] we show the effect of four overloading cycles with o =
1.16, 1.27, 1.32 and 1.39. During stable cycling the crack advances ny = 2.5
springs per cycle (alternating between ny = 2 and ng = 3 springs periodically).
At the overloading cycle the crack elongates a larger quantity, but smaller
elongation occurs in consecutive cycles. Finally, when the stationary situation
is recovered, a net retardation is seen. For a = 1.39 the shielding is such that
the crack completely stops after the overloading cycle. In the inset to Fig. [5]
the nonlinear springs for « = 1.27 are highlighted. It can be seen that the
plastic region of the overload cycle is bigger, but after that the plastic region
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Figure 4: Results as in previous figure, showing the relation between K5, the
size of the plastic region, the parameter relation wuy/u,; and the advance per
cycle N. The plastic region size seems to be a function of K5 and it is limited
by the value of wup/u,;. The system has 160 horizontal rows of springs.

size increases slowly to the stable cycling configuration.

Small Cracks

Another robust effect observed in experimental fatigue propagation is the in-
teraction between the plastic regions of both tips in a short crack. This in-
teraction diminishes the shielding effect of the plastic region and produces a
proportionally larger fatigue advance for small cracks than for larger ones.

In simulations in small systems a single broken spring is usually a non
negligible fraction of the total crack length. This produces that when studying
the small crack effect, a uniform fatigue advance is very difficult to achieve. We
thus measure an alternative quantity that provides an equivalent information,
namely the length of the most stretched unbroken spring as a function of
the stress intensity factor in a single stretching simulation. This is done for
different values of the original crack length.

In Fig. [6] the length of the most stretched spring is plotted as a function
of the stress intensity factor K. When the system does not develop plasticity
(K < K,) the curves for different length coincide, as they should. When the
springs start to explore the plastic regime, the results begin to differ. Springs
at the tip in shorter cracks are elongated more than for longer cracks. This in
turn makes them fail sooner than for longer cracks.
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Figure 5: Number of broken springs N in fatigue propagation showing over-
loading effect, for a = 1.16, 1.27, 1.32 and 1.39. The plastic shielding created
by a larger cycle diminishes the crack advance in the following cycles, such that
when the system stabilizes the propagation is delayed. Contrary to intuition
the effect increases upon greater overloading, and may even stop the propa-
gation. In the inset the overload corresponding to a = 1.27 is plotted. The
arrow shows the plastic zone (highlighted springs) generated by the overload.

Borders proximity

In the previous section the enhancement at fatigue propagation when there
is a limitation in the shielding of the plastic region was observed, and this
was argued to represent the small crack effect. Another very similar case
occurs for semi infinite crack in the middle of the stripe, for low values of the
stripe width. The proximity of the borders to the plastic region diminishes its
shielding property, as seen on Fig. [7]. In this figure the crack advance per
cycle as a function of K, is plotted, like in Fig. [3], for different system sizes.
When the system size is changed, the nominal stress intensity factor scales as
K ~ §/\/Ny. The values of crack advance for different system sizes agree for
small values of Ky, but differ if Ky becomes larger, when the plastic region
approaches the borders.

3 Conclusions

A method to study fatigue crack propagation that fairly reproduces well known
experimental effects, such as Paris curves and overloading effect has been pre-
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Figure 6: Length of the springs at the crack tips vs nominal K (proportional
to 5\ﬁ) Note that the smaller the crack the sooner it breaks, as shown by the
arrow. Here wy/u, = 5, the spring length is measured in units of w,; and [y
is the lattice parameter.

sented. The model is based on a phenomenological incorporation of plasticity
into a lattice spring model. We are currently working to obtain more detailed
result to make quantitative comparison with experiments, and to study the
fatigue phenomenon in deeper detail.
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Figure 7: Crack advance as a function of K5 in a stripe geometry for different
stripe widths. For a given K5 the advance per cycle is larger the smaller the
stripe width. Inset: Snapshots of the system advancing 30 sites per cycle for
system sizes IV, = 40,60, 80. To keep the advancing rate as the size increases
K5 must also be increased.



