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Abstract

Neuber type methods are widely used to predict the local stress-strain behaviour
at notch root in specimens or industrial components. Some limitations of these
methods are pointed out in the present paper, especially when the global loading is
multiaxial and/or random. A fully new approach is then presented: it introduces a
phenomenological model describing the development of residual stresses that can
be calibrated by reference to Eshelby’s type approaches. A tensorial variable is used
for this purpose. Its evolution rule allows us to represent the stress redistribution at
the surface of the component. Isotropic and anisotropic constitutive equations are
accepted for the description of the material behaviour. It has been successfully used
for several complex situations (cyclic, multiaxial, random loadings).

1 Introduction

Fatigue analysis of mechanical components is divided into several steps. The first
one consists in evaluating local stresses and/or strains. Either finite element method
or accelerated computation methods can be used for that purpose. The former gives
an accurate solution but is time consuming, especially for the case of non linear
behavior and complex structures. The latter computes an approximate solution but
within a short time. There are several kinds of accelerated computation methods.
Some of them determine the mechanical steady state: the cycle skip method [1], or
the direct cyclic method [2]. They are useful for the case of constant amplitude load-
ing, or when the steady state is reached quickly. But in case of variable-amplitude
loading, a significant part of the fatigue life is consumed before the steady state
appears, if it does. Moreover, fatigue initiation sites are often known, so that there
is no need to compute the whole structure. That is why Neuber-type methods can
be more interesting as they are dedicated to the evaluation of stress concentrations,
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for instance in notches. The paper wishes to address this class of methods. They
use the local stresses and strains computed at the notch tip from an elastic finite
element analysis (FEA) to evaluate the elastic-plastic ones, and can be applied to
variable-amplitude fatigue loading. Neuber [3] formulated his theory for uniaxial
stress states in 1961. Then, Molski and Glinka [4] proposed an alternative approach
also for uniaxial stress states. Other researchers [5] proposed models extensions
valid for multiaxial stress states, but only for some specific geometries. Lately,
Buczynski and Glinka [6] proposed an incremental model that gives rather good
agreement with FEA results but fails for some components of the stress or strain
tensors. The model proposed in this study is derived from an adjustable scale tran-
sition rule. It considers the material element in the notch root as a plastic inclusion
in a less loaded homogeneous medium. The validity of the approach has been tested
on various loading paths, like constant loading with several stress ratios, in torsion,
tension and combined proportional tension-torsion.

2 Model description

Using the solution of the problem of a spherical inclusionI in an infinite matrixM ,
Kröner’s model allows to determine the relation between the average stress tensor
(σ∼), the stress tensor in an inclusion of an aggregate (σ∼

I), the average plastic strain
tensor (ε∼

p) and the plastic strain tensor in the inclusion (ε∼
pI) [7]. The expression of

equation 1 is valid for uniform elasticity:

σ∼ = σ∼
I + C

≈
:
(
ε∼

p − ε∼
pI

)
(1)

The fourth order tensorC
≈

depends on the elastic properties and of the shape of the

inclusions. As classically shown [8], the corresponding accommodation is elastic,
so that the residual stresses (id estthe difference between the average stress and the
stress in the inclusion) are too large. The residual stress level is valid at the onset
of plastic deformation in the inclusion, nevertheless, a more realistic evaluation for
larger plastic strains must involve a plastic accommodation. This is the case in the
self-consistent approach developed by Hill [9], and also in the “β–rule” proposed
by Cailletaud and Pilvin [10, 11]. The interest of this last model is to preserve an
explicit formulation. The idea is just to replace the plastic strain by an auxiliary
variable, with a non linear evolution, so that the amount of residual stress is limited.
The plastic strain in the inclusion is replaced by a variableβ

∼

I . The average ofβ
∼

I

on the whole aggregate isβ
∼
, and:

β̇
∼

I
= ε̇∼

pI −D
≈

:
(
β
∼

I − δ
≈

: ε∼
pI

)
||ε̇∼

pI || (2)

Unlike Kröner’s or Hill’s models, this approach has adjustable scale transition pa-
rameters. The shape of the tensors can be customized to take into account various
types of materials (see for instance an application to directionnally solidified alloys
in [12]). The purpose of the present paper is to investigate a possible extension of

2



the model to a finite body with a free surface. The plastic zone at the notch tip
is nothing but a specific inclusion, and the zone surrounding this material element
plays the role of the equivalent medium. The fourth order tensorsC

≈
, D
≈

andδ
≈

have

to be determined from FEA. For a tension-torsion loading on the longitudinal axis
2 of a test specimen, the shape of these tensors is the following in Voigt notation: in
our case(1, 2, 3) ≡ (r, z, θ). Only a few components of the stress and strain tensors
are non zero. The tensorδ

≈
is just a diagonal:

σ∼ ≡


0
σ2

σ3

0
σ5

0

 ε∼ ≡


ε1

ε2

ε3

0
ε5

0

 δ
≈
≡


δ1 0 0 0 0 0
0 δ1 0 0 0 0
0 0 δ1 0 0 0
0 0 0 δ2 0 0
0 0 0 0 δ2 0
0 0 0 0 0 δ2

 (3)

Three lines and three colums inC
≈

andD
≈

are full of zeros to ensure a zero stress

vector at the free surface.

C
≈
≡


0 0 0 0 0 0
0 C22 C23 0 C25 0
0 C23 C33 0 C35 0
0 0 0 0 0 0
0 C25 C35 0 C55 0
0 0 0 0 0 0

 D
≈
≡


0 0 0 0 0 0
0 D22 D23 0 D25 0
0 D23 D33 0 D35 0
0 0 0 0 0 0
0 D25 D35 0 D55 0
0 0 0 0 0 0

 (4)

These tensors are introduced in eq. 1, where the macroscopic plastic strain tensor
has been set to zero, and the local plastic strain is replaced byβ

∼

I :

σ∼ = σ∼
I − C

≈
: β
∼

I (5)

We have to determine 14 scale transition parameters, namely six inC
≈

, six inD
≈

, and

two in δ
≈
. This is made by means of:

• an elastic computation of the structure to evaluate the elastic stress state at
the notch root for a prescribed load;

• an elastic-plastic computation providing the two or three first branches of the
history of the local stresses and strains for the same repeated loading.

The von Mises plasticity criterion and a plastic flow deduced from the normality
rule are coupled with a non-linear kinematic behaviour, described by parameters C
and D [13]:
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f (σ∼) = J
(
σ∼ −X∼

)
−R0 (6)

J (σ∼) =

((
3

2

)
sijsij

)1/2

(7)

Ẋ∼ =
2

3
Cε̇∼

p −DX∼ ṗ (8)

ε̇∼
p = ṗ

∂f

∂σ∼
(9)

Figure 1 illustrates the two corresponding FE computations.

a: Elastic regime b: Elastic-plastic regime

R0 250 MPa
E 200 GPa
ν 0.3
C 312500 MPa
D 1250

Figure 1: Description of the finite element analyses used to calibrate the model

3 Comparison between the model predictions and reference FEA

Finite Element analyses have been performed on an axisymmetric notched spec-
imen with the code ZSeT/ZeBuLoN [14]. This geometry has been chosen since
most of the simplified models do not predict a correct local response in this case.
Neuber’s method is really efficient only for uniaxial stress states, and even more
recent methods [6] hardly predict the componentσ3 in this case, even ifσ2 is gen-
erally well captured. The core diameter is 9.2 mm; the diameter at the notch root is
7 mm. The radius of the notch is 0.4 mm. The stress concentration factor in tension
(σ2 at the notch root divided byσ2 on the top of the specimen) is 5.28; the same
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ratio computed for the case of a torsion loading (componentσ5) provides a value of
4.43. The results are used to make the identification of the scale transition parame-
ters. The FE data base includes tension loadings, torsion loadings with several load
ratios (R = 0, -0.3, -0.7) and finally combined proportional tension-torsion loading.
The tension test is computed with an axisymmetric mesh. The elements are second
order quadrilateral with reduced integration. One half of the 3D specimen is mod-
eled by tetrahedral solid elements (10 nodes, 5 Gauss points) for the torsion case,
meanwhile the full specimen is modeled for computing the combined loading. The
three meshes are presented in figure 2. A convergence has been made to establish
the relevant element size at the notch root. The value for the final mesh is 0.02 mm
for the 2D mesh, and 0.14 mm for the 3D meshes. For each loading case, the FE re-
sults were read at the notch tip, on thex1 axis. They are considered as a “numerical
experiment”, and the parameters of the simplified model are adjusted to reproduce
the same curve. The capabilities of the optimizer embedded in ZSeT are used for
that purpose.

(a)

(b)

(c)

Figure 2: Meshes for the three loading cases: (a) Tension, 520 elements, 3330
dofs; (b) torsion, 20818 elements, 99966 dof; (c) Combined loading, 60905

elements, 267807 dof

3.1 Torsion loading

This kind of loading is quite simple since the only non-zero components in the
stress and strain tensors areσ23 = σ5 andε23 = ε5. A torque of 80 N.m is applied
on the top of the mesh. In the FEA (mesh of Figure 2(b)), the geometric symmetry
plane remains plane. It is then fixed in the three directions of the space. The model
parameters have been optimized on the two first branches of a repeated torsion load-
ing. The corresponding values are:C55 = 101764.3 MPa,D55 = 1203.3, δ1 = 0.,
δ2 = 0.425.

Figure 3 (a) shows that the fit of the loop obtained by the model is rather good for
the case used in the identification process. The parameters have then been used
for the simulation of other loading cases, with R=-0.3 and R=-0.7. Figure 3 (b)
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demonstrates that the model gives again a rather good approximation: even if the
mean strain of the stabilized cycle is not the good one, Table 1 shows that the
maximum stress of the steady state cycle is the good one, and the amplitudes of
stress and strain are quite satisfactory. The critical variables used in the multiaxial
fatigue prediction models are then well reproduced. The same result was confirmed
with a loading at R=-0.7, that is not reproduced here for the sake of brevity.

(a) (b)

Figure 3: Comparison of the localσ5 − ε5 histories obtained by FEA and the
simplified model for a torsion loading: (a) R=0; (b) R=-0.3

R = 0 R = -0.3 R = -0.7
FEM Model FEM Model FEM Model

∆ε5 (10−3) 3.34 3.06 4.26 4.17 6.27 6.21
ε5 (10−3) 4.87 5.12 5.36 3.58 4.21 1.54

∆σ5 (MPa) 393.26 391.62 483.24 476.19 572.48 563.19
σ5 (MPa) 1.86 0.13 -1.4 0 -0.59 0

Table 1: Ranges and mean values of stresses and strains at the steady state
obtained by FEA and the simplified model for a torsion loading

3.2 Tension loading

Here the symmetry plane is fixed inx2 direction (mesh of Figure 2(a)), and a tensile
force of 10.6 kN is applied on the top of the mesh. The equivalent stress state on the
top surface is uniaxial, with a value of 160 MPa forσ2. Unlike torsion case, there
are now several non zero terms in the stress and strain tensors, namelyσ2 = σ22

andσ3 = σ33, ε1 = ε11, ε2 = ε22 and ε3 = ε33. The model parameters have
been identified onσ2, σ3, ε2 andε3 of the three first branches of a repeated tension
loading:
C22 = 153136.9 MPa C33 = 314938.6 MPa C23 = 7076.9 MPa
D22 = 287.6 D33 = 8.7 D23 = 40.3
δ1 = 0.684 δ2 = 0.
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The comparisons of the simplified method and of the FEA are given in Figures 4, 5
and Tables 2, 3 for the steady state cycle. The agreement is very good for the
case that has been used for the identification (Fig. 4(a) and 5(a)). It is still quite
satisfactory for the cases R=-0.3 and R=-0.7, which are pure predictions (Fig. 4(b)
and 5(b)). Like for the previous case, there is only a slight difference on the mean
strain, but all the other characteristics of the cycle are good.

(a) (b)

Figure 4: Comparison of the localσ2 − ε2 histories obtained by FEA and the
simplified model for a tension loading: (a) R=0; (b) R=-0.3

R = 0 R = -0.3 R = -0.7
FEM Model FEM Model FEM Model

∆ε2 (10−3) 4.02 4.06 5.39 5.41 7.41 7.40
ε2 (10−3) 3.70 4.03 3.06 2.92 1.68 1.25

∆σ2 (MPa) 760.22 766.34 932.35 936.04 1099.12 1098.76
σ2 (MPa) 1.52 0.31 -0.78 -0.06 -0.28 -0.02

Table 2: Ranges and mean values of stresses and strains at the steady state
obtained by FEA and the simplified model for a tension loading on axis 2
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(a) (b)

Figure 5: Comparison of the localσ3 − ε3 histories obtained by FEA and the
simplified model for a tension loading: (a) R=0; (b) R=-0.3

R = 0 R = -0.3 R = -0.7
FEM Model FEM Model FEM Model

∆ε3 (10−4) -1.12 -1.12 -1.53 -1.54 -2.16 -2.20
ε3 (10−4) -1.19 -1.30 -1.19 -1.00 -0.758 -0.551

∆σ3 (MPa) 234.6 236.84 306.9 307.79 399.56 398.11
σ3 (MPa) 1.08 0.2 -0.14 -0.22 -0.09 -0.08

Table 3: Ranges and mean values of stresses and strains at the steady state
obtained by FEA and the simplified model for a tension loading on axis 2

3.3 Combined tension-torsion loading

The model parameters have been identified on the three first branches of a repeated
tension-torsion proportional loading:

C22 = 133478.7 MPa C33 = 544048.1 MPa C23 = 98024.0 MPa
C55 = 98718.0 MPa C25 = 9079.3 MPa C35 = 29144.9 MPa
D22 = 212.1 D33 = 3.3 D23 = 92.0
D55 = 3744.4 D25 = 10.4 D35 = 9.4
δ1 = 0.75 δ2 = 0.375

Here the test specimen is subjected to a tensile force of 7.0 kN and a torque of 56
N.m. Figure 6 and Table 4 show the comparison between the FEA and the simplified
method, for theσ2 − ε2 loop (Fig. 6(a)) and forσ5 − ε5 (Fig. 6(b)). The agreement
is rather good.

8



(a) (b)

Figure 6: Comparison of the hysteresis loops obtained by FEA and the simplified
model for a tension–torsion loading at R=0: (a)σ2 − ε2; (b) σ5 − ε5

FEM Model
∆ε2 (10−3) 2.65 2.69
ε2 (10−3) 2.75 2.80

∆σ2 (MPa) 522.75 515.14
σ2 (MPa) -14.62 1.47

FEM Model
∆ε5 (10−3) 2.09 2.09
ε5 (10−3) 2.15 1.87

∆σ5 (MPa) 275.26 271.59
σ5 (MPa) -3.64 -0.55

(a) (b)

Table 4: Comparison of ranges and mean values of stresses and strains obtained by
FEA and the simplified model for a tension–torsion loading at R=0

4 Concluding remarks

In this paper, we developed a new method based on an adjustable scale transition
rule to evaluate the local stress and strain states at a notch root. The method was
tested under tension, torsion and combined proportional tension-torsion loadings,
with different stress ratios. The model predictions are in good agreement with FEA
results, even for the orthoradial stress–strain loops. For all the cases, the stress re-
distribution, the related local ratchetting and the final mechanical steady state are
well described. These results are quite encouraging, and show that the output of the
simplified model can then be taken as the input of a multiaxial fatigue analysis.

Further developments will include a more detailed study of theδ
≈

tensor, suppression

of non significant parameters ofC
≈

andD
≈

, and the identification of the model on a

larger data base, including several load amplitudes and non proportional loading
paths. The physical meaning of the parameters of the transition rule will be also
considered.
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