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Abstract: The charge-free zone model for electrically conductive cracks in 
piezoelectric ceramics is reviewed and applied to interpret the experimental 
results on poled lead zirconate titanate PIC 151 ceramics. Good agreement 
between the experimental results and the charge-free zone model indicates again 
that the concepts of fracture mechanics can be applied to the failure of conductive 
cracks in piezoelectric ceramics.   
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1. Introduction  
 

Piezoelectric ceramics have become preferred materials for a wide variety of 
electronic and mechatronic devices and structures due to their pronounced 
dielectric, piezoelectric, and pyroelectric properties. However, aging, fatigue and 
electrical and/or mechanical breakdown may occur in and lead to failure of the 
materials. Furthermore, piezoelectric ceramics are brittle and susceptible to 
cracking at all scales from electric domains to electronic devices. Due to the 
importance of electrical and mechanical reliability of devices and structures made 
of piezoelectric ceramics, there has been tremendous interest in studying the 
fracture behavior of such materials [1-6]. Yang [7], Zhang et al. [8] and Chen and 
Lu [9] provided overviews on fracture of piezoelectric ceramics. These overviews 
summarized the current knowledge on the fracture of piezoelectric ceramics 
including the theoretical development of piezoelectric fracture mechanics and the 
experimental achievement on the failure behavior of piezoelectric ceramics under 
mechanical and/or electrical loading. In the overview article [9], Chen and Lu 
gave a detailed discussion about the strip polarization saturation model [4] as the 
premier nonlinear model. Later, Zhang and Gao [10] reviewed new developments 
in the research on fracture of piezoelectric ceramics and introduced two new 
models, namely, the dielectric breakdown model and the charge-free zone model. 
Schneider [11] reviewed experimental results that allow one to interpret the 
essential features of fracture in ferroelectric ceramics under electric and/or 
mechanical loading.     

 
Internal electrodes have widely been adopted in electronic and 

electromechanical devices made of piezoelectric ceramics. These embedded 
electrodes may naturally function as pre-conductive cracks or notches if Young’s 
modulus of the electrode is much smaller than Young’s modulus of the ceramics. 
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In addition, dielectric breakdown and partial discharge may convert an originally 
electrically insulating crack to an electrically conductive crack. Figure 1 
schematically shows the similarity between a conductive crack under electrical 
loading and a conventional crack under mechanical loading. To ensure that the 
electric field inside the conductive crack remains zero, electric charges in the 
conductive crack surfaces rearrange themselves to produce an induced field that 
has the same magnitude as the applied one but with an opposite sign. As a result, 
the charges in the upper and lower crack surfaces near the crack tip have the same 
sign, as shown in Fig. 1. Charges with the same sign repel each other and have a 
tendency to propagate the crack. Garboczi [12] studied the contour-independent J-
integral, which is a fundamental concept in fracture mechanics, for conductive 
cracks in dielectric materials. The J-integral for a conductive crack in a dielectric 
material under purely electric loading is similar to the J-integral for a 
conventional crack under purely mechanical loading, which is shown in Fig. 1 as 
well. It is therefore of practical importance and academic significance to apply the 
concepts of fracture mechanics to the failure of conductive cracks in piezoelectric 
and dielectric ceramics.   

 

                         
Fig. 1 A comparison of a normal crack subjected to remote uniform mechanical 

stress, σ, and a conductive crack subjected to remote uniform electrical 
field, E. JM and JE denote, respectively, the mechanical and electrical J-
integrals, and */YCM π=  and 2/πκ=EC , where YY =*  for plane stress or 

)1/( 2* ν−=YY  for plane strain, Y, ν and κ  are, respectively, the Young’s 
modulus, Poisson ratio, and dielectric constants of the material. 

 
Heyer et al. [13] studied the electromechanical fracture toughness of 

conductive cracks in PZT-PIC ceramics. They conducted four-point bending tests 
on pre-notched bars, in which the poling direction was toward the jig surface and 
the notch was filled with NaCl solution to make the crack conducting. Wide-
scattering results were obtained under a large applied electric field of 

2/1/50 mkVKE > , where EK  is the applied electric intensity factor. The critical 
stress intensity factor increased as the applied electric intensity factor changed 
from 2/1/30 mkV  to 2/1/90 mkV− . When the applied electric intensity factor was 
relatively small, within the range of 2/1/15 mkV−  to 2/1/15 mkV , they could 
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explain the experimental data using a domain-switching-based model. Using 
compact tension samples with conductive notches, Wang and Zhang [14] and Fu 
et al. [15] performed extensive fracture tests on thermally depoled and poled lead 
zirconate titanate (PZT-4) ceramics under purely electrical or mechanical loading. 
Their experimental results indicate that both the purely electric and mechanical 
fields can propagate conductive cracks (notches) and fracture the samples. Under 
purely electric loading, there exists a critical energy release rate at fracture, which 
is named the electric toughness. The electric toughness is much larger than the 
mechanical toughness, i.e., the critical energy release rate at fracture under purely 
mechanical loading. The high electric toughness was attributed to great energy 
dissipation around the conductive crack tip under purely electric loading, which is 
impossible under mechanical loading in the brittle electroceramics.   
 

To understand the experimentally observed failure behaviors of conductive 
cracks in dielectric and piezoelectric ceramics under electric and/or mechanical 
loading [14, 15], Zhang et al. [16-18] proposed the Charge-Free Zone (CFZ) 
model by analogy to the dislocation-free zone model. The CFZ model treats 
dielectric and piezoelectric ceramics as mechanically brittle and electrically 
ductile. Charge emissions occur at the conductive crack tip and the emitted 
charges are entrapped in front of the tip. The entrapped charges partially shield 
the crack tip from the applied electrical field and the local electric intensity factor 
has a non-zero value. Consequently, there is a non-zero local electric energy 
release rate, which contributes to the driving force to propagate the conductive 
crack. The merit of the CFZ model lies in the ability to directly apply the Griffith 
criterion to link the local energy release rate to the fracture toughness in a purely 
brittle manner. As a result, the CFZ model provides an explicit failure criterion 
for predicting the failure behavior of conductive cracks in dielectric and 
piezoelectric ceramics under electrical and/or mechanical loading. For 
piezoelectric ceramics [17, 18], the failure formula has an elliptic shape in terms 
of the normalized electric intensity factor and the normalized stress intensity 
factor. When the normalized stress intensity factor is set as the horizontal axis, the 
major semi-axis of an elliptic shape is rotated anticlockwise 45º or -45º if the 
applied electric field is parallel or anti-parallel to the poling direction. For 
dielectric ceramics with zero piezoelectric constants, the failure formula is 
reduced to a quarter of unit circle [16]. The advantage of applying such a failure 
criterion lies in the ability to predict the critical electric field and the critical 
mechanical load at which a dielectric or piezoelectric ceramic material containing 
a conductive crack or an internal electrode fails under electrical and/or 
mechanical loading. The critical electric field and the critical mechanical load are 
functions of the crack size or the length of the electrode, while both the electrical 
fracture toughness and the mechanical fracture toughness are material properties. 
Thus, one can predict the critical electric field and the critical mechanical load 
when the sample geometry and the electrical fracture toughness and the 
mechanical fracture toughness are available.  
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The experimental results on electrically conductive cracks (deep notches) in 
poled lead zirconate titanate PZT-8 ceramics under mechanical and/or electrical 
loading verify the theoretical prediction of the CFZ model [18]. But, the 
experimentally determined coupling factor deviates from the theoretical predicted 
value [17]. This quantitative inconsistency prompts us to re-examine the CFZ 
model [19]. The concept of secant piezoelectric constant was introduced to refine 
the CFZ model and the refined CFZ model explained the experimental results 
perfectly [19]. The theoretical modification and the re-analysis of the 
experimental data indicate that the piezoelectric effect in the failure of conductive 
cracks in piezoelectric ceramics is reduced due to the high electric field at the 
crack tip [19]. The empirical fitting of the experimental results for both PZT-4 
and PZT-8 ceramics under mechanical and/or electric (positive or negative) 
loading yields a coupling factor, which value is smaller than the corresponding 
value predicted from the CFZ model with the nominal piezoelectric constants. 
This strongly supports the rationale of using the secant piezoelectric constant. 
Although the absolute values of the experimental data exhibit great scattering and 
large difference between the PZT-4 and PZT-8 ceramics, the normalized 
experimental results can be predicted by the refined CFZ model. As described in 
the previous publications [16-19], the CFZ model is two-dimensional, in which 
electrical charges are treated as line charges per unit length and the line charges 
are allocated along a strip in front of a conductive crack tip. The two-dimensional 
CFZ model is able to capture the physical nature of the three-dimensional 
phenomena of electric charges emitted from a conductive crack tip and trapped in 
front of the tip. The distinctive advantage of the two-dimensional CFZ model lies 
in that it is simple and that the failure formula derived is easy to apply to 
engineering practices.  

 
The purpose of the present study is to apply the CFZ model to interpret the 

experimental results obtained by Heyer et al. [13].  
 
2. The Charge-Free Zone Model   

                  
Fig. 2  The field distribution in front of a conductive crack, wherein ob is the size 

of the charge-free zone and ba the trapped charge zone. 
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The CFZ model is a two-dimensional model, in which charges are treated as 
line charges per unit length. Under applied electric loading, the high electric field 
at a conductive crack tip has the tendency to emit charges from the tip, while there 
are image forces acting on the charges, which are against the charge emission. 
Therefore, there must be a charge-free zone in front of the crack tip in order to 
emit charges continuously from the crack tip. These emitted charges are entrapped 
in the region of ba, as shown in Figure 2, where ob denotes the CFZ size. With 
the simplified constitutive equations, the CFZ model gives the local energy 
release rate [17]:  

( ) ( )2212 a
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where M, e and κ represent, on a qualitative basis, the elastic, piezoelectric and 
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In Eq. (2), ),( 2 kF π  and ),( 2 kE π  are the complete elliptic integrals of the first kind 
and the second kind, respectively. The parameter Ω is defined as the ratio of the 
local electric intensity factor to the applied, i.e., a

E
l
E KK Ω= , which represents the 

shielding level of the trapped charges to the conductive crack tip. By using the 
local energy release rate as the failure criterion [17], the CFZ model leads to the 
following failure formula:  
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where o
CK ,σ  (or o

CEK , ) is the mechanical (or electrical) fracture toughness under 

purely mechanical (or electrical) loading, a
CK ,σ  (or a

CEK , ) is the critical stress (or 
electric) intensity factor under combined mechanical and electrical loading. Note 
that the negative sign is for positive electric loading and positive sign is for 
negative electric loading. Mathematically, Eq. (3) has the form of 

122 =++ yxyx η  with o
C

a
C KKx ,, / σσ=  (or o

CE
a

CE KKx ,, /= ) and o
CE

a
CE KKy ,, /=  

(or o
C

a
C KKy ,, / σσ= ), and ( ) 21222

/
/ ΩMee κη += m , which is called the coupling 

factor. The mathematic equation can be expressed in the standard form of an 
ellipse, 12222 22 =−++ )]/(/[ˆ)]/(/[ˆ ηη yx , where the )ˆ,ˆ( yx  coordinator system 
is established by rotating 45° from the horizontal axis of the ),( yx  coordinate 

system. The absolute value of η is less than two due to ( ) 11
2122 >+

/
/ eMΩκ  and 

thus Eq. (3) indeed describes an ellipse in terms of the normalized applied 
intensity factors. In the case that the poling diction is along the positive x-
direction, e is positive. Thus, if applied electric fields are parallel to the poling 
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direction, i.e., under positive electrical loading, 0<η  and the major semi-axis is 
located on the x̂ -axis, while 0>η  and the minor semi-axis is located on the x̂ -
axis when applied electric fields are anti-parallel to the poling direction, i.e., 
under negative electrical loading. On the other hand, e is negative when the poling 
direction is along the negative x-direction. In this case, 0<η  and the major semi-
axis is located on the x̂ -axis under negative electrical loading, i.e., when applied 
electric fields are parallel to the poling direction, whereas 0>η  and the minor 
semi-axis is located on the x̂ -axis under positive electrical loading, i.e., when 
applied electric fields are anti-parallel to the poling direction. For clarification and 
simplification, we may conclude that 0<η  and the major semi-axis is located on 
the x̂ -axis if applied electric fields are parallel to the poling direction and 0>η  
and the minor semi-axis is located on the x̂ -axis if applied electric fields are anti-
parallel to the poling direction. For dielectric materials, the piezoelectric constant, 
e, is zero and thus, the interaction term, i.e., the second term on the left hand-side 
of Eq. (3) disappears, thereby reducing Eq. (3) to the failure criterion for 
conductive cracks in dielectric materials [16].  

 
3. Results and discussion   

 
A great challenge in analysis of fracture and failure data of piezoelectric 

ceramics under mechanical and/or electrical loading is the large scattering of 
experimental data, which has been emphasized in previous publications [8, 20, 
21]. That is why large number of tests has been repeated in the study of fracture 
and failure behaviors of conductive cracks [14-19]. Many repeated tests allow us 
to conduct a statistic analysis, which makes results more reliable.  

In Heyer et al.’s experiment [13], the applied electric intensity factor changed 
from 2/1/30 mkV  to 2/1/90 mkV− . They did not measure the value of the 
electrical fracture toughness, o

CEK , , under purely electrical loading. Therefore, we 
shall use Eq. (1) to analyze their data. Eq. (1) can be written as 

( ) ( )2222 a
E

a
E

al KMeKKMG Ω+−= κσ .                    (4) 

Under purely mechanical mode I loading, the critical energy release rate is 
determined to be   

( )2,2 o
C

l
C KMG σ= .         (5) 

 
Combining Eq. (5) and Eq. (4) yields  
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Eq. (6) will be used to fit the experimental data [13] by using the least-squares 
method.  
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Figure 3 shows the fitting results, giving ( )2,
o

CKσ =0.9167 ( )2mMPa  or 
o

CK ,σ =0.9574 mMPa , =− e2 12.3 C/m2 or =e -6.2 C/m2, and 

16.1022 =Ω+ κMe  (C/m2)2. The fitted value of the mechanical fracture toughness 
is almost the same as the measured one, as shown in Fig. 3. Actually, the 
measured data of mechanical fracture toughness of PZT ceramics scatters due to 
the brittle nature of the material. The fitting results show that the piezoelectric 
constant has a minus sign, which is consistent with the material properties listed 
in [13]. However, the fitted value of 16.1022 =Ω+ κMe  (C/m2)2 does not make 
sense to the CFZ model because the value of 22 Ω+ κMe  should be larger than or 
at least equal to 2e . If we assume the value of 2ΩκM  equal zero, Eq. (6) is 
reduced to  

a
CE

a
C

o
C eKKK ,,, −= σσ .                     (7) 

Eq. (7) shows the linear relationship between the applied mechanical stress 
intensity factor and the applied electric intensity factor. Applying Eq. (7) to fit the 
experimental data yields =e -6.9 C/m2 and o

CK ,σ =0.9637 mMPa , which are 
consistent with the fitting results with Eq. (6).  

 
Fig. 3 Experimental data [13] and fitting curves with Eq. (6) and Eq. (7).  

 

The inconsistence between the fitting results with Eq. (6) and the CFZ model 
might be caused by large data scattering and insufficient number of data. As 
indicated in Fig. 3, the two data at the applied electric intensity factors 

2/1
, /30 mkVK a
CE >  might be treated to be bad data. We eliminate the two bad 

data and fit the rest with Eq. (6) and Eq. (7) again, as plotted in Fig. 4. In this case, 
the linear fitting gives o

CK ,σ =0.9368 mMPa  and =e -7.5 C/m2. The nonlinear 
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fitting leads to o
CK ,σ =0.9409 mMPa , =e -8.6 C/m2, and 10022 =Ω+ κMe  

(C/m2)2, thereby resulting in 04.262 =ΩκM  (C/m2)2. The Young’s modulus, M, 
and the dielectric constant, κ , are at the orders of 1011 Pa and 8

0
3 1010 −≈κ  

C/(Vm), respectively, where 12
0 1085.8 −×=κ  C/(Vm) is the dielectric constant of 

vacuum. As described above, the parameter Ω is defined as the ratio of the local 
electric intensity factor to the applied, representing the shielding level of the 
trapped charges to the conductive crack tip and its mathematical expression is 
given by Eq. (2). From the fitting result of 04.262 =ΩκM  (C/m2)2, we may 
estimate the parameter Ω to be 0.16, which is smaller than the values obtained for 
PZT-4 and PZT-8 ceramics [19]. The small value of the parameter Ω implies that 
the applied electric field is greatly shielded by the charge zone. This case might 
occur if the charge-free zone is extremely small, as indicated by Eq. (2).   

 
Fig. 4 Experimental data except of two bad data at the applied electric intensity 

factors 2/1
, /30 mkVK a
CE >  [13] and fitting curves with Eq. (6) and Eq. (7). 

 

4. Concluding remarks: 
 
The present work demonstrates that the CFZ model can be successfully 

applied to interpret the experimental results on poled lead zirconate titanate PIC 
151 ceramics. Although there is large data scattering, the CFZ model can fit them 
with a wider range in comparison with the fitting based on the domain switching 
model [13]. The fitted material properties are at the same order as these listed in 
Reference [13], which indicates that if we conduct a numerical analysis based on 
Stroh formalism with the material properties, we should be able to predict the 
fracture behavior, which will be done soon. The advantage of the simplified 
constitutive equations lies in that the failure criterion given by Eq. (1) is simple 
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and user-friendly. However, there is a parameter Ω that has to be determined from 
fitting experimental results at the moment.   
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