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Abstract

A cohesive fracture model is used to capture the effect of a single peak overload in a ductile
316L steel alloy under plane stress conditions, viz. crack retardation. Previously, the model
was used to capture the fatigue life at different loading ratios. The model follows a bi-linear
traction-displacement relationship coupled with a nonlinear damage evolution equation. The
rate of damage evolution is characterized by three material parameters corresponding to damage
accumulation, crack closure and stress threshold. The results indicate that a higher peak load
results in higher fatigue crack retardation. The results also agree with experiments that suggest
that strain hardening, not crack closure, is the leading mechanism for the overload effect.

1 Introduction

The fatigue life of a structure is influenced by mechanical, microstructural and environ-
mental factors, all of which result in material damage, typically equated to crack length [5].
Indeed the field of fracture mechanics has had profound influence on fatigue analysis. For
mechanical type loads, fatigue life of a component or structure is calculated as the number
of loading cycles needed to grow a pre-existing crack to a predetermined critical dimension
or to nucleate and grow a crack from a notch or other location of stress concentration.

The focus of this paper is the so-called stage-II fatigue crack growth, i.e., the stable
propagation of a dominant crack. Starting with the Paris model [10, 11], fatigue life pre-
dictions have typically been based on equations relating the stage-II rate of crack growth
(da/dN) to the stress intensity range (∆K), also called the driving force, characteristic of a
constant magnitude cyclic applied load and of specimen geometry. Here a is the crack length
and N is the number of loading cycles. Attempts to incorporate more complex conditions
affecting the crack growth rate led to models whose parameters depend on characteristics
of the applied load or of the environment, as well as the redefinition of ∆K.

The Paris model and similar approaches are valid under the ideal conditions of linear
elastic fracture mechanics (LEFM), small-scale yielding, constant amplitude cyclic loading
and long cracks. When these conditions are not met, these approaches lose their predictive
capability. In particular, the Paris model is not useful if the load is not purely cyclic or is
of variable amplitude. Overload is a particular example of a varying-amplitude load. In
overload, a single loading cycle has higher amplitude than all the others. It is known that
the response to overload is a short-lived increase in crack speed followed by a prolonged
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decrease in the speed. Our aim is to capture this behavior in our model without any
additional ad hoc parameters or equations.

Cohesive zone fatigue models have most commonly been implemented as cohesive in-
terface finite elements. De Andres et al. [1] proposed a bilinear traction-separation rela-
tionship, which unloads to the origin with no cyclic degradation of either the stiffness or
the peak traction. Nguyen et al. [6] pointed out that such a model can lead to plastic
shakedown that arrests crack growth after a few cycles. Hence, a distinction between load-
ing and unloading paths is necessary, which allows for subcritical crack growth. In [6], a
cohesive model with an unloading-reloading hysteresis was developed. In this work, the
stiffness and the peak load degrade proportionally to the unloading stiffness as the number
of cycles increases. Roe and Siegmund [12] introduced a damage variable, whose evolution
resulted in the degradation of the cohesive zone traction. The cohesive relationship under
monotonic loading was based on the potential proposed by Xu and Needleman [17]. Maiti
and Geubelle [4] proposed a cohesive model of fatigue fracture in polymeric materials in
which the cohesive stiffness evolves as a function of the rate of opening displacement and
of the number of loading cycles since the onset of failure.

The proposed cohesive zone model, an earlier form of which was presented in [14], is
bilinear under monotonic loading and shows a degrading peak traction and stiffness behav-
ior under cyclic loading due to an evolving damage variable. The model is a constitutive
relationship of the material, i.e., unlike the Paris and other models, its parameters do not
depend on loading characteristics such as the load ratio, defined as the ratio of minimum to
maximum load. Rather, it contains three physically motivated parameters, which govern
crack advance, threshold, and retardation, respectively. As in [12], the model introduces a
scalar (energy like) damage variable, governed by an evolution equation, which provides a
phenomenological framework to account for the nonlinear processes associated with fatigue
failure. Our earlier work [13] showed the ability of the model to capture crack retardation
due to load ratio and healing.

2 A damage-based cohesive model allowing for crack

retardation

We postulate a degrading linear traction-separation relationship of the form

T = F (κ)δ, (1)

where κ is a damage variable, δ is the effective opening displacement, defined in Section 3,
and T is a scalar effective cohesive traction, also defined in Section 3. The dependence of
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the elastic coefficient F on κ is specified by

F (κ) =
σc(1− κ)

κ(δu − δc) + δc

; (2)

δc is the critical displacement at which the crack initiates and damage starts to accumulate,
δu is the failure displacement, i.e., the displacement at which the traction becomes zero,
and σc is the initial peak traction of the interface. The traction T is also required to satisfy
the inequality T ≤ C(κ), where C(κ) is specified by

C(κ) = σc(1− κ). (3)

Under cyclic loading, the model exhibits a degrading peak traction, i.e., a decreasing
value of C(κ), and a degrading stiffness, i.e., a decreasing value of F (κ) as the value
of κ increases, resulting in eventual loss of load transmission ability of the interface. The
variable κ takes values between 0 and 1 corresponding to no damage and complete fracture,
respectively. The expression proposed in (2) has the desirable property that the elastic
coefficient F (κ) is strictly decreasing so that the traction T decreases from σc (when κ = 0)
to 0 (when κ = 1.) The ascending and descending linear branches of the monotonic
response are not explicitly defined by the above equations but rather are a consequence of
these equations. On the ascending branch, the relationship T = F (κ)δ holds with κ = 0
and hence F (κ) is a fixed constant. Therefore, the relation between T and δ is linear on the
ascending branch. When the opening displacement is increasing and T is at its capacity
(i.e., the critical traction σc is attained), the inequality T ≤ C(κ) becomes binding and
the equation F (κ)δ = C(κ), arrived at by substituting T = C(κ) into (1), holds. Upon
substituting (2) and (3), this yields δ = κ(δu − δc) + δc. Thus, the choice of (2) results in
a linear relationship between κ and δ on this branch of the loading curve. Furthermore,
substituting (3) shows that T , κ, and δ are all linearly related. Fig. 1 shows a schematic
representation of the proposed cohesive traction-displacement relationship. In this figure,
branch OB is the ascending part of the loading curve, BC is the descending part of the
loading curve, and CO is the unloading curve.

The evolution of the damage variable is governed by:

κ̇ = α∗κ(T − βC)(δ̇) if (T − βC)(δ̇) > 0,

κ̇ = 0 if (T − βC)(δ̇) < 0,

κ̇ = λ̇ if T = C and δ̇ > 0.

(4)

where λ̇ is a free variable, and α∗, β are material parameters that capture the rate of
damage evolution, and the threshold for initiation of damage, respectively. The parameter
α∗ takes on one of two distinct values for the cases of loading and unloading, δ̇ > 0 or
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Figure 1: Schematic representation of the proposed cohesive traction-separation relation-
ship. No change in damage occurs during OA; damage starts increasing after the threshold
at A; BC shows the descending part of the loading curve; no damage change takes place
during the unloading path CD; damage decreases during unloading from D to O.

δ̇ < 0, denoted by the parameters α and −γ, respectively, which are regarded as material
parameters.

Evolution equations (4) are reminiscent of damage plasticity [3]. The first and second
equations allow damage accretion (when δ̇ > 0) or healing (when δ̇ < 0) to occur only
when the traction is greater or less than the threshold limit during loading and unloading,
respectively. Physically, this can be thought of as damage accretion or healing occurring
only when the work done by an effective traction, i.e., the value of the traction above the
threshold, on the crack surface is positive. A key property of both surface roughness and
crack tip plasticity as causes of crack retardation is that they become strongly active only
when the crack opening displacement returns to a small value in the trough of the cyclic
loading. This explains why our evolution equation for damage decrease is inactive until
the traction drops below a threshold level. During loading, if the value of the traction (T )
reaches peak traction (C), it is constrained to move along the envelope T = C(κ). This
in turn forces the relationship C(κ) = F (κ)δ to hold, which defines the evolution of κ.
Therefore, for this situation, the third case of (4) does not constrain κ̇ at all since λ̇ is free.
This case is again analogous to classical plasticity theory in which a parameter λ̇ is chosen
in the loading case to ensure that the stress remains on the yield surface. The analogy to
plasticity is not complete, however, because our model does not involve a strain or relative
displacement decomposition.
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3 Finite Element Implementation and Extrapolation

The cohesive model described in Section 2 is implemented as a constitutive relationship
governing interface elements in a finite element mesh. These are zero thickness elements
obtained by duplicating grid points along bulk element edges. Our cohesive finite element
implementation, which is based in part on work by Ortiz and Pandolfi [7], depends on an
effective scalar parameter

δ =
√

η2δs.δs + δ2
n, (5)

where η is a nondimensional factor that couples the normal and shear effects, δs is the shear
component of the opening displacement and δn is the normal component. The cohesive
model (1) defines a scalar traction T as a function of effective opening displacement. This
scalar traction is used in turn to define the usual vector traction via the formula:

t =
T

δ
(η2δs + δnn). (6)

Following standard procedures, e.g., [17, 7], the finite element discretization is obtained
from a virtual power equation that involves power due to stresses in the bulk material and
power due to interface tractions. Because of the ascending branch of the cohesive model,
which makes the model active before the critical stress is reached, node duplication is
necessary from the outset of the simulation. In cases where the crack path is not known in
advance, cohesive interface elements must tile the domain. This results in mesh dependence
associated with the ascending stiffness of the cohesive model [2]. On the other hand,
implementation of cohesive interface elements that are inactive (rigid) before the critical
stress is reached [7, 8], and therefore can be inserted adaptively as needed, is not easy in
implicit calculations. However, all applications in this paper involve a predetermined crack
path so that cohesive interface elements are inserted along that path only and the effect
of the ascending stiffness is minimal. Likewise, the obvious mesh dependence of interface
finite elements is avoided without need of any special meshing strategies [9].

Cycle-by-cycle simulations of high-cycle fatigue applications require excessive compu-
tational resources. For this reason, a simple but quite effective extrapolation scheme was
used to predict the fatigue life of the specimens. Suppose one wishes to simulate N cy-
cles of a material whose fatigue parameters in our model are (α, β, γ). Suppose also that
a damage-accumulation scaling function f(k) exists such that one could instead compute
only N/k cycles explicitly using modified parameters (αf(k), β, γf(k)). The function f(k)
is chosen so that one cycle with these modified parameters causes an equal amount of
fatigue crack propagation as k cycles with the actual parameters. Note that the damage
accumulation parameters α and γ are scaled but not the threshold parameter β. We carried
out a variety of experiments with ranges of parameters and crack lengths and found that
in all cases, linear scaling with f(k) = k gave excellent results, i.e., N cycles with (α, β, γ)
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gave very similar results as N/k cycles with (αk, β, γk). Note that the scaling is purely an
extrapolation scheme and is not a change of the model parameters.

The model was implemented in the finite element software Abaqus. All analyses were
performed under the assumption of plane strain. Each explicit cycle for the R = 0.1
simulation had 18 time steps and the R = 0.1 simulation had 10 time steps per load cycle.
This was chosen so that each load step is an increment or decrement of 10% of the peak
load. The fatigue parameters α, β, and γ that appear in the damage evolution equation (4)
were chosen so that good agreement is obtained with the experimental crack length versus
load cycle curves.

4 Overload effect

Fatigue crack growth rates are well known to be decelerated by the application of over-
loads, which tend to cause an initial increase of the crack growth rate, followed by fast
decrease before the final return to steady state crack propagation. The cause is usually
attributed to plasticity induced crack closure, strain hardening, crack tip blunting, crack
deflection, and/or branching depending on the toughness of the material. Wheatley et
al. [15] performed experiments on ductile 316L steel, which indicated that overall crack
retardation under plane stress conditions is related to strain hardening and residual com-
pressive stresses in the plastic region of the overload. Plane stress simulations using the
proposed model were performed on a CT specimen of width 40 mm and thickness 6 mm
[16] with an initial crack 18 mm long. In the experiment, the pre-crack was initially a 12
mm blunt crack, which facilitated a 6mm crack obtained with the application of high cycle
fatigue loading. The applied loading ratio was R = 0.1 with a minimum load of 3 kN. An
elastic-plastic material model with linear kinematic hardening was used to model the bulk
material with parameters E = 1.93 GPa, ν = 0.33, σc = 588 MPa, and σy = 334 MPa, as
given in the experiment.

Figure 2 shows simulation results for several single peak overloads applied early on
(N=4,000 cycles.) Crack retardation is more pronounced when the overload is higher. The
crack accelerates immediately following the overload but slows down within a few cycles and
then reaches a minimum before eventually attaining the pre-load crack growth rate. The
simulations closely match the experimental results. The extrapolation scheme was applied
during the constant amplitude portions of the loading, i.e., away from the overload. It was
observed that using the extrapolation scheme soon after the application of the overload
caused the finite element program to crash due to the sudden increase in the value of the
damage variable in the process zone. Hence, cycle-by-cycle calculations.

Unlike in the cyclic loading of the aluminum alloy CT specimen described in our other
work [13], surface roughness and asperities do not seem to have significant effect on the
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Figure 2: Illustration of overload effect : crack retardation following application of a single
peak overload increases with increasing value of the peak load

crack growth rate in the present application. Based on fast scanning electron microscopy
observations, Wheatley et al. [15, 16] suggest that strain hardening and residual stresses
caused by plastic deformation due to the peak overload are responsible for crack retarda-
tion. To explain the immediate acceleration and subsequent retardation of crack growth,
Wheatley et al. hypothesize a small fatigue damage zone ahead of the crack tip and argue
that in their experiment crack closure was not a significant cause of the overload effect.

Compared to the aluminum alloy CT specimen, the plasticity zone causing crack re-
tardation is much larger in this simulation due to the ductility of the material. Indeed,
it is large enough to be represented well by plasticity of the elements in our mesh. (We
confirmed the activity of the plasticity by observing a drastic change in the results when
plasticity in our finite element analysis was disabled.) Thus, the cause of retardation is
already captured by properties of the bulk elements, so there is no need for the γ param-
eter, which, as stated earlier, is intended to capture physical causes of crack retardation
occurring at subgrid scales. Our FEM simulations corroborate this contention. Indeed
setting γ equal to zero in the cohesive model made little difference in the crack retardation
plots.
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The physical interpretation is as follows: due to the sudden increase in load beyond
the yield limit of the highly ductile material, strain hardening plasticity produces residual
stresses in the plastic region, which envelopes the damage zone. These force the fatigue
damage to be minimal and slow down the fatigue crack. Hence, even though the crack
accelerates immediately following the application of the peak load due to a high value of
KII , the subsequent size of the damage zone ahead of the crack tip is reduced. The crack
growth rate thereafter slowly increases as the size of the damage zone ahead of the crack tip
increases to its pre-load value. In accordance with the theory presented in [15, 16], change
in the yield stress of the material made a significant difference in the fatigue crack growth.
As the ultimate stress was reduced towards a more brittle material, crack retardation was
reduced to a point that it completely disappeared after the initial transient acceleration.
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Int. J. Solids Structures, 25(3):299–326, 1989.

[4] S. Maiti and P.H. Geubelle. A cohesive model for fatigue failure of polymers. Engi-
neering Fracture Mechanics, 72(36):691–708, 2005.

[5] K. J. Miller. Metal fatigue – past, current and future. Proc Instn Mech Engrs, 205:291–
304, 1991.

[6] O. Nguyen, E. A. Repetto, M. Ortiz, and R. A. Radovitzky. A cohesive model of
fatigue crack growth. International Journal of Fracture, 110:351–369, 2001.

[7] M. Ortiz and A. Pandolfi. Finite-deformation irreversible cohesive elements for three
dimensional crack propagation analysis. International Journal for Numerical Methods
in Engineering, 44:1267–1282, 1999.

[8] K. D. Papoulia, C.-H. Sam, and S. A. Vavasis. Time continuity in cohesive fi-
nite element modeling. International Journal for Numerical Methods in Engineering,
58(5):679–701, 2003.

8



[9] K. D. Papoulia, S. A. Vavasis, and P. Ganguly. Spatial convergence of crack nucleation
using a cohesive finite element model on a pinwheel-based mesh. International Journal
for Numerical Methods in Engineering, 67(1):1–16, 2006.

[10] P. C. Paris and F. Erdogan. A critical analysis of crack propagation. Trans. ASME.
J Basic Eng., 85:528–534, 1963.

[11] P. C. Paris, M. P. Gomez, and W. E. Anderson. A rational theory of fatigue. The
Trend in Eng., 13:9–14, 1961.

[12] K. L. Roe and T. Siegmund. An irreversible cohesive zone model for interface fatigue
crack growth simulation. Engineering Fracture Mechanics, 70:209–232, 2001.

[13] A. Ural, V. R. Krishnan, and K. D. Papoulia. A cohesive zone model for fatigue crack
growth allowing for crack retardation. Submitted, Internat. J. Solids Struct., 2008.

[14] A. Ural and K. D. Papoulia. Modeling of fatigue crack growth with a damage-based
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