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1. Introduction 
 
The authors have been investigated the characteristic of stress singularity fields at 
a vertex on an interface in two- and three-dimensional bonded joints [1,2,3].  It is 
well known that stress distribution in stress singularity fields can be expressed as 
a function of distance from a stress singular point.  In two-dimensional joints, an 
angular variation for the stress distribution in a polar coordinate system with an 
origin at the stress singular point can be expressed analytically based on the 
theory of elasticity [4,5,6,7]. On the contrary, in three-dimensional joints[8], an 
angular variation of stress distribution in a spherical coordinate system cannot be 
clearly expressed until now.  For instance, stress singularity line which is a cross 
line with an interface and a side free surface will affect on the stress distribution 
near the vertex. Generally, stress distribution in the stress singularity region can 
be expressed as follows. 
 
     ! ij r,",#( ) = Kmr

$%m fij
m ",#( )

m

&        (1) 

 
Here, r represents the distance from the stress singular point, Km the intensity of 
singularity, fij

m !,"( )  the angular function for stress distribution, and λm the order 
of stress singularity.  In the present paper, a material combination in electronic 

 

 
 

Fig.1  Three-dimensional bonded structures 
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devices is used and the distribution of residual thermal stress near the vertex in 
three-dimensional joint structures is precisely investigated.  In particular, the 
order of singularity is determined using an eigen equation based on a finite 
element formulation, and angular functions, fij(θ,φ), for stress distribution 
determined from eigen vector will be compared with the distribution of residual 
thermal stress calculated using BEM.  The intensity of singularity at the vertex in 
three-dimensional joints will be determined considering stress singularity lines. 
 
2. Analysis 
 
2.1 Method for analysis 
In the present paper, residual thermal stresses are calculated using BEM.  The 
expression for boundary integral equation is shown below. 
 
     cij P( )uj P( ) = Uij

*
P,Q( )t jdS Q( )

!" # Tij
*
P,Q( )ujdS Q( )

!"   (2) 

 
where cij represents constant depending on the geometry of boundary, Ω the 
boundary in the domain for analysis, Uij

*  and Tij
*  are fundamental solutions for 

displacement and traction, respectively.  P and Q are observation and source 
points on the boundary.  ti and ui are traction and displacement vectors, 
respectively.  In the present paper, Rongved's solution for two-phase isotropic 
materials is used for analysis as the fundamental solutions.  Hence, mesh division 
on an interface in joints is not required for analysis. 
 
Eigen equation using a finite element method was formulated for determining the 
order of stress singularity as follows[9]. 
 
     p

2
A[ ] + p B[ ] + C[ ]( ) u{ } = 0       (3) 

 
where p represents the characteristic root, which is related to the order of 
singularity, λ, as λ=1-p.  [A], [B] and [C] are matrices composed of material 
properties, and {u} represents the displacement vector. 
 
In the present paper, thermal residual stress is determined following Duhamel's 
theorem. When isotropic and homogeneous materials are subjected to a 
temperature variation of ΔT, thermal strain !ij

T  can be expressed as 
 
     !ij

T
= " # $T .        (4) 

 
where α represents the coefficient of thermal expansion, and δij Kronecker's delta. 
When thermal expansion is constrained, thermal stress occurs.  Material follows 
Hooke's law, and then a relationship between stress and strain is expressed as 
follows. 



 3 

 

     ! ij =
E

1+ "
#ij +

"
1$ 2"

#kk% ij
&
'(

)
*+
$

E

1$ 2"
,-T% ij     (5) 

 
where E represents Young's modulus, and ν Poisson's ratio.  In calculating the 
residual thermal stress, stress analysis for the joint on side surfaces subjecting to 
E!"T 1# 2$( )  is firstly carried out, and the applied stress is secondly subtracted 
from the results of stress distribution. 
 
Model for analysis is shown in Fig.2. The size of silicon is 0.1mm in height and 
20mm in width. The thickness of interlayer (resin) is 0.01mm. Material properties 
used in the analysis are shown in Table 1. 
 

Table 1   Material properties used in analysis 
Young's 
modulus 

Thermal 
expansion 

Poisson's 
ratio 

Thermal 
stress 

 

E [GPa] A [! 10-6 K-1] ν σth [MPa] 
Silicon 166 0.30 0.26 161 
Resin 2.74 33 0.38 58.4 

 
3. Results and Discussion 
 
3.1 Eigen analysis 
Mesh division for eigen analysis is shown in Fig.3.  Figure 3(a) represents mesh 
on a unit sphere with an origin at the vertex. Figure 3(b) shows the developed θ!  
φ plane of the sphere surface. In the present paper, two eigen analyses were 

 
 

Fig.2  Bonded structure for analysis 
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Table 2  The order of stress singularity 
The order of singularity 
φ1＝π/2 φ1＝π  

pvertex  λvertex pside    λside 
1 1.000  0.000 1.000  0.000 
2 1.000  0.000 1.000  0.000 
3 1.000  0.000 1.000  0.000 
4 0.606  0.395 1.000  0.000 
5 -       - 1.000  0.000 
6 -       - 0.682  0.318 

 conducted to obtain the order of stress singularity at the vertex and at a point on 
a stress singularity line. The results of eigen analysis are shown in Table 2.  
Symbol φ1 in Table 1 indicates an angle between two stress singularity lines on 
the interface shown in Fig.2. It is found that a triple root of p=1 in φ1=π/2 and a 
quintuple root of p=1 in φ1=π exist. From the previous paper[10], it is shown that 
a repeated root exists, and then the logarithmic singularity occurs. Stress in the 
stress singularity field can be expressed as 
 

     ! ij

s
r ,",#( ) = K1ij

s
f
1ij ",#( )r $%

+ K
2ij

s
f
2ij ",#( ) + Kkij

s
fkij ",#( ) ln r( )

k$2

k=3

M

&     (6) 

 
where r = r t , M=4 (φ1=π/2) and 6 (φ1= π), and Kkij

s  represents the intensity of 
singularity. 

        
 
(a) A mesh divison of the surface of           (b) A mesh on the developed θ!  φ  
a unit sphere with the origin at the vertex         plane 
 

Fig.3  FEM model for eigen analysis 
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Angular functions for stress components obtained from eigen analysis in Eq.(3) 
are examined. In the present paper, angular functions of fθθ, frθ and fθφ 
corresponding to the modes I, II and III at the crack tip are precisely investigated.  
Figure 4 represents the distribution of angular function, fij, on the θ-φ plane.  In 
these figures, the value of fij is normalized using the value of fθθ at φ=π/4 and 
θ=π/2.  The angular functions cannot be normalized by the maximum values, 
because fθθ and fθφ have a singularity at θ=π/2 and φ=0, π/2, where stress 
singularity lines exist. 
 
Angular functions, fij, distributed on the unit sphere shown in Fig.2 may be 
characterized by a distance from a stress singularity line.  Stress distribution in a 
cross section, APQ, shown in Fig.5 can be expressed using a power law with the 
order of singularity for the stress singularity line with an origin at the point A.   
ρAP represents the distance from a point A on the stress singularity line to a point 
P on the unit sphere.  Here, the angular functions on the stress singularity line can 
be expressed as follows. 

 

 
   (a) Distribution of angular function f

!!

s    (b) Distribution of angular function fr!
s    

 
(c) Distribution of angular function f!"

s  
 

Fig. 4  Distributions of angular function fij
s  on the θ−φ plane 
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where Θ represents the angle between AP and AQ, !

AP
= ! 1" sin2# cos2$ .  

Angular functions in spherical coordinate system with the origin at the vertex can 
be obtained by transforming from cylindrical coordinate system. Angular 
functions, f

!!

s , fr!
s , f!"

s , on the interface (at Θ=0) is expressed using the angular 
function for stress components in the cylindrical coordinate system as follows. 
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Here, h

x!

l  represents the angular function for σxΘ.  Substituting Eq.(7) into Eq.(8) 
yields  
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Fig.5  Stress singularity line near the vertex 
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Here, the superscript A in fij

sA  indicates that the angular functions correspond to 

the stress singularity line OA.  It is found from Eq.(9) that f
!!

sA , f!"
sA  and fr!

sA  have 
a singularity for the singularity line as φ approaches to zero.  Figure 6 represents 
the distributions of angular function, fθθ, frθ and fφθ on the interface.  Considering 
the influence of the stress singularity line, OB, on the stress distribution near the 
vertex and the symmetry of angular functions with respect to φ=π/4, angular 
functions in the spherical coordinate can be expressed as 
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For simplicity, some coefficients are arranged like as Lk!!
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Fig.6 Angular functions at the interface θ=π/2 
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B), etc. and these coefficients are set to be Lkij
A*
= Lkij

B*
= Lkij

*  in the present model. 
Furthermore, logarithmic terms in the expressions are neglected, and then 
coefficients in the angular functions are determined using a least square method 
for plots shown in Fig.6.  
 

Table 3  Coefficients of angular functions 
 f

!!

s  fr!
s  f!"

s  

Power law term  L
1!!

*  0.6493 L
1r!

*  -0.0037 L
1!"

*  0.2891 

2nd term L
2!!

*  -0.4566 L
2r!

*  0.7165 L
2!"

*  -0.0171 

3rd term - - L
3r!

*  -0.0088 - - 
 
Substituting the angular functions, fij

s , into Eq.(6) yields  
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3.2 BEM analysis 
Distributions of residual thermal stresses are obtained using BEM and are shown 
in Fig.7.  These figures represent the distributions on the interface against the 
distance from the vertex.  Plots for various angles φ is parallel to each other and a 
plot for φ=π/4 shows the smallest value at the same r (=r/t) in σθθ and σφθ except 
σrθ. Figure 8 shows the distribution of σθθ, σrθ and σφθ against φ at r =0.01. Stress 
distribution shown in Fig.8 is similar to the distribution of angular functions, fij, 
against φ. In this figure, all stresses are normalized by the value of σθθ at φ=π/4 
and θ= π /2. 
 
Coefficients, K1ij, of Eq.(11) for the plots of σθθ and σrθ at φ=π/4 and σφθ at φ=π/6 
in Fig.7 are determined using a least square method.  The coefficients of Eq.(11) 
are listed in Table 4. 
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                                          Table 4  Coefficients of Eq.(11) 

K
1!!

s  43.74 K
1r!

s  17.68 K
1!"

s (at φ=30deg) 41.09 

K
2!!

s  -95.62 K
2r!

s  2.93 K
2!"

s (at φ=30deg) 1.01 

 
Table 5  The intensity of singularity 

K
!!

3D , MPa 28.4 K
r!

3D , MPa -0.065 K!"

3D , MPa 11.88 

 
Equation (11) can be arranged as  
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                       (a) Stress σθθ                                            (b) Stress σrθ 
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     Fig. 7  Distributions of stress for r/t          Fig.8 Distributions of stress against φ  
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and the intensity of singularity at the vertex is defined as Kij

3D
= K

1ij

s
L
1ij

*  in the 
present paper.  The value of intensity includes the influence of the vertex and 
singularity lines on the stress singularity.  The values of the intensity are listed in 
Table 5.  It is found that the intensity of singularity in the stress component, σθθ, 
relating to delamination of the interface is the largest value. 
 
4. Conclusion 
 
In the present paper, angular functions near the vertex on an interface in a three-
dimensional bonded joint were derived from eigen analysis based on a finite 
element method. A relationship between angular functions for the vertex and for 
the stress singularity line was derived. The intensity of singularity at the vertex 
was defined considering the stress singularity in the radial direction from the 
vertex and that in the angle φ direction reflecting the influence of stress 
singularity line on the stress distributions. Finally, the values of the intensity of 
singularity were determined. 
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