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1 Introduction

Ductile damage plays a significant role in many forming processes which induce
large strains. Coupled damage-plasticity models have become quite successful at
predicting the underlying porosity initiation, porosity growth/coalescence and lo-
calized deformation. In the present paper we adopt a scalar damage variable which
isotropically affects the elastic and plastic response of the material. The model is
fully nonlocal to avoid pathological localisation effect.Here we focus on its imple-
mentation in a three-dimensional tetrahedral element.

Tetrahedral elements are often used because mesh generators can reliably mesh
complex geometries with them. To reduce computational times, low order ele-
ments are preferred, but it is well known that when extra constraints are applied
these elements may show a poor performance. For instance when dealing with in-
compressibility or near incompressibility they may show locking behavior. Some
approaches have been developed in the literature to avoid this problem. The avail-
able approaches can be categorized as follows. (1) Stabilizing mixed elements by
enriching the displacement using a bubble function. (2) Using mesh-dependent per-
turbation terms. (3) Mixed-enhanced strain stabilization. (4) Orthogonal sub-grid
scale methods. (5) Finite increment calculus methods. (6) Average nodal pressures
or nodal deformation gradients. Here we use a mixed formulation with an addi-
tional bubble displacement, because it can be used in large deformations and it can
be implemented in a relatively straightforward fashion. For efficiency reasons the
displacement bubble is condensed out of the equations at theelement level.

In section 2 the mixed version of the coupled damage-elastoplasticity formulation
on which the element is based is explained. The Finite element implementation of
the model using bubble enriched displacement field is introduced introduced in sec-
tion 3. A numerical example is given in section 4 to demonstrate the performance
of the method and the conclusion is given in section 5.
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2 Coupled damage-elastoplasticity model (mixed version)

This section summarises the equations used in the three fieldmodel and its imple-
mentation. The elastic response of the material is discussed in section 2.1. Section
2.2 explains the plastic evolution. Then the damage growth and non-locality are
explained in section 2.3.

2.1 Elastic response

The coupled damage-elastoplasticity model follows exactly the same lines as in
[1]. Continuum Damage Mechanics is used, in which the damage variableωp rep-
resents the effect of damage on the material’s mechanical response. The concept
of an effective stress is used in order to characterize the effect of the damage [2].
According to this principle the response of a damaged material is given by the con-
stitutive laws of the virgin material in which the (Kirchhoff) stress is replaced by
the effective stress [3]

τ̂ =
τ

(1 − ωp)
(1)

The establishment of a coupled elasto-plastic damage material model considering
finite deformations is based on the multiplicative split of the deformation gradient
F = Fe.Fp into an elastic partFe and a plastic partFp. This multiplicative decom-
position inherits all features of the classical models of infinitesimal plasticity [4].
The effective Kirchhoff stress tensor is decomposed as

τ̂ = τ̂h I + τ̂
d (2)

in which τ̂h is the hydrostatic part of stress andτ̂
d is deviatoric part. Each of these

parts satisfies the following elastic relations:

τ̂
d = G(4Is −

1

3
I ⊗ I) : ln be (3)

τ̂h =
1

2
K I : ln be (4)

wherebe = Fe · FT
e is the elastic left Cauchy-Green deformation tensor, which

is used as a non-linear measure of elastic strain, andK andG are bulk and shear
modulus respectively.

2.2 Plastic deformation

Classical J2 plasticity is used here. This implies that the elastic domain is defined
in terms of the effective stress as

φ̂(τ̂ , τ̂y) = τ̂eq − τ̂y ≤ 0 (5)
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In equation (5)̂τeq is effective stress, which is defined as

τ̂eq =

√

3

2
τ̂

d
: τ̂

d (6)

The evolution of the plasticity related internal variablesis obtained by the assump-
tion of associative plasticity [2]:

▽

be = −2γ̇
∂φ̂(τ̂ , τ̂y)

∂ τ̂
.b̂e (7)

ε̇p = γ̇
∂φ̂(τ̂ , τ̂y)

∂τ̂y
(8)

γ̇ ≥ 0, φ̂(τ̂ , τ̂y) ≤ 0, γ̇ φ̂(τ̂ , τ̂y) = 0 (9)

▽

be in the first of these equations is the Lie derivative ofbe. Finally plastic hardening
is governed by the hardening law

˙̂τy = hεε̇p (10)

2.3 Damage growth

Combining equations (1) and (3) shows that the damage variable affects the elastic
response of the material. Similarly, it also affects the yield surface via (1), (5) and
(6). In a nonlocal formulation the evolution of the damage variable,ωp, in a certain
material point not only depends on the loading history of that point, but also on
surrounding material points. The damage evolution is governed by the rate law:

ω̇p = hωκ̇ (11)

wherehω is a step function

hω =

{ 1
κc−κi

if κi ≤ κ ≤ κc

0 otherwise
(12)

andκ is a history variable. Damage grows only whenκ reaches an initial valueκi

and atκ = κc the material carries no load and fails completely. The evolution of κ
is obtained by Kuhn-Tucker relations

κ̇ ≥ 0, z̄ − κ ≤ 0, κ̇(z̄ − κ) = 0 (13)

in which initially κ is assumed to beκi .
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In the above equation̄z is a nonlocal damage driving variable which is calculated
by averaging a local variablez. The implicit gradient formulation of that averaging
reads

z̄ − ℓ2∇2z̄ = z (14)

where∇2 andℓ are the Laplacian in the current configuration and an internal length
parameter respectively. To solve the above Helmholtz PDE there is a need for a
boundary condition, which is here of the Neumann type

E∇ z̄.En = 0 (15)

with En the outward normal. This additional boundary value problemmust be solved
simultaneously with the equilibrium equation.

The local variablez in it can be chosen in a manner to account for the influence of
the stress triaxiality on the damage growth. Here it is takento be

ż = hzε̇p (16)

In which hz is of the form proposed by Goijaerts et al. [5]

hz = ⌊1 + A
τh

τeq
⌋ εB

p with ⌊x⌋ =

{

x, x > 0
0, x ≤ 0

(17)

The influence of the effective plastic strain and triaxiality can be adjusted by selec-
tion of the material constantsA andB.

3 FEM implementation using enriched mixed formulation

The material behavior described in section 2 is now implemented using a tetra-
hedral element. To avoid locking we use an independent pressure discretisation
together with a bubble displacement enrichment. The implementation of the de-
scribed model is similar to that of [1], but here, because themixed form is used, an
additional partial differential equation for the effective hydrostatic kirchhoff stress,
τ̂h, has to be satisfied. The derivation of the weak form of the equations is explained
in section 3.1 and the discretization of this weak form with attention to the addition
of the bubble displacement field is discussed in section 3.2.

4



3.1 Weak form of the equations

The governing PDEs to be solved simultaneously read:

E∇ · [(τhI + τ
d)

1

J
] = E0 (18)

τ̂h =
1

2
K I : ln be (19)

z̄ − ℓ2∇2z̄ = z (20)

The related boundary conditions of the above equations read:

Eu = Eu⋆ on Su (21)

Et = En ·
τ

J
= Et⋆ on St (22)

E∇ z̄ · En = 0 on S= Su ∪ St (23)

The weak forms of the PDEs follow by the usual arguments as:

∫

�

( E∇ Eφ)T : (τhI + τ
d)

1

J
d� =

∫

Ŵ

Eφ · EqdŴ (24)

∫

�

ψ(τ̂h −
1

2
K I : ln be)d� = 0 (25)

∫

�

(φz̄z̄ + ℓ2 E∇φz̄ · E∇ z̄ − φz̄z)d� = 0 (26)

whereEφ, ψ andφz̄ are weight functions corresponding toEu, τ̂h andz̄.

3.2 Discretization using bubble enrichment of the displacement

Standard discretization of the weak forms derived in section 3.1 results in a system
of equations which shows an overly stiff response, which is commonly termed lock-
ing. The treatment that we use here is that the displacement and the corresponding
weight function are split into contributions in two spaces

Eu = Eu′ + Eu′′ (27)
Eφ = Eφ′ + Eφ′′ (28)
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The termEu′ (and Eφ′) is discretised using the standard linear shape functions.The
additional displacement fieldEu′′ vanishes on the element boundaries and therefore
has no effect on the overall displacement. Although it will be condensed out of the
equations at the element level, it will greatly improve the element’s performance.
The interpolation for the bubble displacement and weighting function is given in
terms of the volumetric coordinatesλ1, λ2, λ3 associated with tetrahedron as

N ′′ = 256λ1λ2λ3(1 − λ1 − λ2 − λ3) (29)

The hydrostatic Kirchhoff stress,̂τh, non-local damage driving variable,z̄, and
standard displacement,u′, and their corresponding weight functions are interpo-
lated linearly within the element - see Figure 1. We denote the discretisation thus
introduced

Eu′ = N
∼

′T Eu
∼

′ (30)

z̄ = N
∼

′T z̄
∼

(31)

τ̂h = N
∼

′T τ̂
∼

h (32)

Eu′′ = N
∼

′′T Eu
∼

′′ (33)

Application of the discretisation to the weak form and subsequently eliminating the
coefficients of the weight functions results in a system of nonlinear equations of the
form

EF
∼

′

int
= EF

∼

′

ext
(34)

EF
∼

′′

int
= E0

∼
(35)

F
∼

τh

int
= 0

∼
(36)

F
∼

z̄

int
= 0

∼
(37)
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in which the following terms have been used

EF
∼

′

ext
=

∫

Ŵ

N
∼

′EqdŴ (38)

EF
∼

′

int
=

∫

�

E∇N
∼

′ · (τhI + τ
d)

1

J
d� (39)

EF
∼

′′

int
=

∫

�

E∇N
∼

′′ · (τhI + τ
d)

1

J
d� (40)

F
∼

τh

int
=

∫

�

N
∼

′(τ̂h −
1

2
K I : ln be)d� (41)

F
∼

z̄

int
=

∫

�

(N
∼

′z̄ + ℓ2 E∇N
∼

′ · E∇ z̄ − N
∼

′z)d� (42)

whereEq is the traction vector,N
∼

′ andN
∼

′′ are the columns of shape functions andE∇

is the gradient with respect to the current coordinates. TheBackward-Euler method
is used to calculate all history dependent variables in (39)-(42).

We linearise and then condense out one equation per element which finally results
in three sets of equations to be simultaneously solved instead of four. The solution
to the aforementioned system of equations consists of threedisplacement compo-
nents, one hydrostatic Kirchhoff stress and one non-local damage driving variable
per corner node, as well as three bubble displacements in thenode interior to the
element as shown in figure 1.

uu

ub

z̄

τ̂h

λ1

λ2

λ3

Figure 1: Location of the bubble node in the tetrahedral element.

4 Numerical example

To study the performance of the element a variant of Cook’s membrane problem is
investigated in a three dimensional simulation. It consists of a tapered plate clamped
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Table 1: Material properties used in the Cook’s membrane test.
Shear modulusG 80.19G Pa
Bulk modulusK 164.21G Pa
Initial flow stressτy0 0.45G Pa
Residual flow stressτy∞ 0.715G Pa
Linear hardening coefficienth 1.290G Pa
Saturation exponentα 16.93
Damage initiation thresholdκi 0.05
Critical value of history parameterκc 0.90
Intrinsic lengthℓ 2 mm
Damage parameterA 14
Damage parameterB 0.5

at one of its sides while a shearing displacement acts on the other side - see Figure
2. One element through the thickness is used and all surface nodes in the three
dimensional mesh are constrained in the direction perpendicular to the plane of the
sketch in order to have a plane strain situation. A vertical displacement of u = 7 mm
is applied to the nodes on right edge of the plate. In our simulations, we compare
the performance of the standard isoparametric formulation(linear tetrahedral) and
the formulation developed above. The material parameters are chosen in a way to

48
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[mm]

Figure 2: Geometry and finite element discretization of the model.

induce damage during deformation. Table 1 shows the material properties used in
this test.
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The reaction force on the right edge of the plate versus the displacement as obtained
with the methods indicated above is compared to that obtained by the standard
element. Figure 3 demonstrates that upon refining the mesh, the curves associated
with the standard element are tending to converge to a uniquesolution.

The figure clearly shows that the coarsest standard isoparametric formulation over-
estimates the force. The force versus displacement curve obtained using the new
element in a coarse mesh is much closer to the refined meshes using the standard
formulation and thus does not show a pathologically stiff behaviour. This element
thus has the ability to generate more accurate solutions even for coarse discretisa-
tions at a limited additional cost. Figure 4 shows the damagedistribution at the end
of the deformation process.
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Figure 3: Force versus displacement of the standard and new element while using
different mesh refinement.

5 Conclusion

We have presented an implementation of a three-field low-order non-local elasto-
plastic damage element which prevents locking. In this implementation an addi-
tional field, the hydrostatic Kirchhoff stress, is discretised and the element displace-
ment is enriched by a bubble. The enrichment does not add muchto the calculation
time as it is condensed out at the element level. The element performance is tested
by using a benchmark problem and it shows superiority over the standard elements
in dealing with incompressibility.
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Figure 4: Distribution of damage within the plate.
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