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Abstract

In the Gurson model, the derivation of a yield function employs the hypothesis of 
plasticity  in  matrix  material  as  a  primary  basis.  The  obtained  condition  takes 
account of both plasticity in matrix and growing of micro-voids embedded in the 
matrix. Then physical problems are solved by defining damage-plasticity on the 
associated yield surface. But the porous material contains also the matrix material 
as  a  physical  component  that  undergoes  its  own  evolution.  Since,  in  Damage 
Mechanics, the hypothesis of effective stress relies stresses in matrix and porous 
material,  the matrix  yield  condition  may be written  explicitly  as  a  function  of 
stresses  in  porous  material.  So  a  new condition  appears  to  restrict  the  Gurson 
condition,  leading  to  some non-smooth  yield  surface.  The  present  contribution 
develops this scheme to several generalized Gurson conditions.

1. Introduction: the Gurson model

The Gurson model was  first presented in an original paper in 1977 [1], in order to 
obtain a yield surface for porous rigid perfect-plastic material.  When the matrix 
material  surrounding  spherical  micro-voids  is  a  von  Mises  material,  Gurson 
proposed an approximate yield surface under the form

),( xf σ = )/( 0σσeq
2+2x cosh( 02

1 /σσtr )-1-x2 =0,

(cosh: hyperbolic cosine;  eqσ : equivalent tensile stress;  σtr : trace of the Cauchy 

stress tensor  σ ). Constant  0σ  is the equivalent tensile yield stress in the matrix 

material and  x is the void volume fraction  v (x=v,  10 ≤≤v ). Note that this yield 
condition gives at complete ductile failure where 0=σ

2x-1-x2=0   or    x=1

i.e. a limiting value  xu=1  for x=v (evidently, failure arises before this value).
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In subsequent works, the Gurson surface and generalized similar surfaces were used 
by the authors for write normality law in plastic-porous material considered as a 
whole without reference to the matrix material. We can refer to references [2,6] for 
such treatments of the problem. Li [7] was the first to show a link between this 
Void Growth Model and Continuum Damage Mechanics by introducing the so-
called “effective stress” concept [8], [9]. So he recovered a generalized Gurson 
function by an inverse method, and in the sequel used the classical normality rule 
with this surface to treat the damage-plasticity evolution.

Here we consider an other point of view and, in a new approach of the problem, we 
adapt this model to Damage Mechanics by using the “effective stress” concept. In 
reality, the matrix material is the effective material suffering stresses rσ  related to 
the Cauchy stresses σ  by means of a (linear) operator M or (in our case) a scalar 
function y, under the classical forms

rDM σσ :)(=    ,   rxy σσ )(=

The fourth-rank operator  M is  said the “damage effect  tensor” and depends on 
damage variables such as the area density of damage D. In the second formula, y(x) 
must be a positive scalar (regular) function of some damage-variable  x  related to 
the micro-voids  volume  fraction  (see  Part  2), satisfying  to  the  following 
(mathematical) properties:

dy/dx<0   ,   y(0)=1   ,   y(xu)=0

(xu is the ultimate value of  x) in order to take account of the damaging process 
throughout  the porous  material.  Naturally  the function  y(x) is  unknown and its 
determination  depends  on  the  mechanical  problem under  consideration.  In  the 
reference [10], this problem was solved in a specific case briefly recalled in Part 2. 
In subsequent parts, other cases are analysed.

2. The Tvergaard-Needleman model

In this section, we consider a generalized Gurson yield surface for porous rigid 
perfect-plastic material with spherical micro-voids [11], viz

),( xf σ =Q2 +2qx cosh(H/2)-1-q2x2 =0,  Q= 0/σσeq ,  H=tr 0/σσ

where q=3/2 and H, Q are normalization parameters since 0σ  is a constant. In the 
papers [4] or [7] by example, x is a function of the void volume fraction v to take 
account of void coalescence (after nucleation and growth) before fracture

cvvifvvx ≤≤= 0)(
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where vc=0.15 is the critical value of v at which void coalescence begins, vF=0.25 
its value at complete ductile failure, and xu the ultimate value of x, obtained from 
the yield condition when 0=σ

2qxu-(1+q2xu
2)=0   or   xu=1/q=2/3

since at complete failure the material is at yielding even if stresses vanish. So the 
parameter x increases from 0 to 1/q=2/3 when the void volume fraction v increases 
from 0 to vF=0.25  (see Fig.2 in Part 5).

Now, in the framework of Damage Mechanics recalled in Part 1, if we introduce the 
von Mises surface used for the rigid perfect plastic matrix material, it is seen that 
this surface may be expressed in function of the Cauchy stress tensor σ  in place of 
the effective stress tensor rσ , so writing the von Mises yield surface

fr(σ ,x)=Q2-y2(x)=0 

So the reversible region is the intersection of the interiors of the yield surfaces f=0 
and fr=0, i.e. the interiors of the regions of boundary OABC on Fig.1.

Figure 1. Interiors of OABC (1/4 meridian section) are the accessible stress states 
(y0(x)=1-qx). Gurson surfaces are approximated by linear segments (thin lines).

But, due to the rigidity of the matrix material,  the region defined by  f<0 (y0<y) 
cannot be contained in the region defined by fr<0 (Fig1.a). So we have necessarily 
the stress states associate to Fig.1b (y0>y) , along AMB and on point B only (due to 
rigidity of the matrix material). Along AMB plasticity without damage takes place 
and on B both plasticity and damage arise. For H=0 (on the Q-axis), we have for 
the respective values Q’ and Q’’ of Q obtained from the yield surfaces f=0 and fr=0 

Q’=(1-qx)   ,   Q’’=y(x) 
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Therefore it results (Fig.1b) from mechanical considerations

y(x) ≤ y0(x) =(1-qx) 

A process of damage-plasticity arises if the stress point remains on both the two 
yield surfaces at the non-smooth point B, so obtaining H and Q by the formulae

cosh(H/2)=(1+q2x2-y2(x))/2qx   ,   Q=y(x)

Finally we recall the properties that must be satisfied by the unknown function y(x): 
y is decreasing on the interval [0,xu], y(0)=1, y(xu)=0, y(x) ≤ y0(x)=1-qx.

As an example we consider the uniaxial  tensile test with ( )0011 >= σσ m ,  so that 
H=m and Q=m. The point B is defined by 

2qxcosh (m/2)=1+q2x2-y2(x)   ,   m=y(x)

These equations give the two unknown quantities m and y. In particular the function 
y(x) is defined by an implicit relation obtained by eliminating m , viz

y2+2qxcosh(y/2) -1-q2x2=0     uxx≤≤0
or

y2+2qx(cosh( y/2)-1)-(1-qx)2=0     uxx≤≤0

It results 

y(0)=1  ,  y(xu)=y(1/q)=0  ,  y(x) ≤ y0(x)= (1-qx),

 and by derivation

(2y+qx sinh(y/2)) (dy/dx)=-2q(cosh(y/2)-qx)

showing that the derivative of  y is  negative since the maximum value of  qx is 
qxu=1, and that the function y(x) is decreasing. Finally we can solve x in function of 
y (y is a monotonic function) so obtaining

qx(y)=cosh( y/2)-(y2+sinh2(y/2))1/2   10 ≤≤y

in order to draw the representative curve of the function y(x). So the problem of the 
determination of the decreasing function  y (x) is achieved. In reference [10], the 
problem of finite simple shear is also analysed.

3. The Garajeu-Suquet model 
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In this part, with the notations of Part 1 and 2, we consider the generalized yield 
surface [12]

f(σ ,x)=(1+2x/3)Q2+2x cosh(H/2)-1-x2 =0

This relation gives at complete failure (where σ =0) the ultimate value xu=1. The 
relative positions of this yield surface and the von Mises surface fr=0 are analogous 
to the positions described in Fig.1, but here the function y0(x), (defining the point on 
the Q-axis) is given by

y0(x)=(1-x)/(1+2x/3)1/2

Due to  the rigidity  of  the matrix  material,  only the Fig.  1b is  suitable;  so the 
following mechanical condition must be satisfied

y(x) ≤ y0(x) =(1-x)/(1+2x/3)1/2

The damage-plasticity arises if the following conditions are fulfilled (point B on 
Fig.1)

2x cosh(H/2)=(1+x2-(1+2x/3) y2(x))   ,   Q=y(x)

In this scheme, the function y(x) must satisfied to the properties given in Part 1. Its 
complete determination depends on the problem under consideration. By example 
for the uniaxial tensile test (see Part 2), we have the implicit equation

(1+2x/3)y2+2x cosh(y/2) -1-x2=0     10 ≤≤x
or

y2+[2x/(1+2x/3)](cosh(y /2)-1)-y0
2(x)=0     10 ≤≤x

It results  y(0)=1  ,  y(1)=0  , y(x) ≤ y0(x)  and by derivation

[(1+2x/3)y+(x/2) sinh (y/2)] (dy/dx)=-[(cosh(y/2)-x)+y2/3]

Since x= xu= 1 is the maximum value of x, the second member of this equality is 
negative and  y(x) is decreasing (so a monotonic function of  x). Then, in order to 
draw the graph of the function y(x), it is possible to express x as a function of y, so 
obtaining

x(y)=[cosh(y /2)+y2/3]-[ (cosh( y/2)+y2/3)2+y2-1]1/2   ,   10 ≤≤y

where the sign (-) was chosen to satisfy the equality y(0)=1. So the determination 
of y(x) is achieved.
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4. The Hashin-Shtrikman model

Here we consider the generalized yield surface [13]

(1+2x/3)Q2+x(H/2)2-(1-x)2=0

At complete failure (H=0, Q=0) we have the ultimate value  xu=1.  The relative 
positions of this yield surface and the von Mises surface are similar to the positions 
shown in Fig.1. The analogous point on the Q-axis is given by 

y0(x)=(1-x)/(1+2x/3)1/2    0 ≤≤x 1

and must satisfy the inequality y(x) ≤ y0(x) . In the case of damage-plasticity (point 
B on Fig.1), H and Q are given by

x( H/2)2=(1-x)2-(1+2x/3) y2(x))   ,   Q =y(x)

in function of y(x) that must be determined in each mechanical problem.

For the uniaxial problem of the Part 2, this function is 

y(x)=(1-x)/(1+11x/12)1/2

and satisfies to the necessary conditions, dy/dx<0, y(0)=1 , y(1)=0  , y(x) ≤ y0(x) ). 
The determination of y(x) is achieved.

5 The Tvergaard model

As a final example, we consider a generalization of the Gurson model [14] used by 
several authors. For reason of brevity, only the yield surface is written

),,( Mxf σσ = 2
2 )/( MQ σ + )/cosh(2 122

1
1 MQqxq σ -1-q3x2=0, Q2= eqσ ,  Q1=trσ

(in this part,  Q1 and  Q2 are not normalized stresses) where  q1,  q2,  q3 are fitting 
constant  positive  parameters  used  in  order  to  take  account  of  some  specific 
properties for porous materials. We suppose that the matrix is rigid-plastic with a 
von Mises criterion and Mσ  denotes the flow yield strength of the matrix material 

(where  Mσ  is a known function of the equivalent plastic deformation  Mε  of the 

matrix material; by example MM kεσσ += 0 , k being a material constant).
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The  parameter  x has  the  meaning  given  in  Part  2.  Here  we  have  drawn  the 
representative curve of  x in function of  v on Fig.2. We note that the inequalities 
xu>vF=0.25>vc=0.15 are satisfied, so that the linear piece-wise curve is drawn on 
Fig.2. The ultimate value of x is given by the yield surface when 0=σ , so obtaining

2q1xu-1-q3xu
2 =0

 

Figure 2.Graph of the function x(v) with vF<xu<q1/q3.

This quadratic equation gives two values of xu if the existence condition q1
2-q3 ≥ 0 is 

satisfied. But, for mechanical reasons, only the expression 

 q3 xu=q1-(q1
2-q3)1/2

for the limiting value xu of x will be  retained, since it is the first value associated to 
the complete failure (i.e. 0=σ ). Note that q1-q3 xu

0≥ . The particular case of Part 2, 
where q3=q1

2, q2=1 is relevant of the above condition.

Now the effective stress tensor rσ  is introduced, related to the Cauchy stress tensor 
σ  by using the function y(x) as it was made in section 2, with the same conditions, 
viz  dy/dx<0,  y(0)=1,  y(xu)=0. Taking account of the von Mises condition on the 
matrix material, it results

Meqreq xyxy σσσ )()()( ==

so that the yield condition on the porous material becomes 

),,( Mxf σσ =y2+2q1 x cosh( MQq σ/122
1 )-1-q3x2=0 

We note that this quadratic form (relatively to x) allows to write the variable x as a 
function of y and σ , under the form
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q3 x=q1cosh( −)/122
1

MQq σ [(q1
2cosh( )/122

1
MQq σ -q3(1-y2)]1/2

since  the  term between  brackets  may  be  easily  seen  greater  than  the  positive 
quantity  (q1

2-q3)  (a  condition  obtained  for  the  existence  of  xu).  In  writing  this 
expression we have use the fact that y=1 for x=0, so eliminating the second root of 
the quadratic equation. This result  permits to recover the choice of the value  xu 

given for the limiting case x=xu where 0=σ  (so Q1=0) and y(xu)=0 (this previous 
choice was justified by mechanical consideration).

The determination of the function  y(x) must be made in each particular problem. 
We consider the uniaxial tensile test with ( )011 >=mσ , so that Q1=m and Q2=m. In 
an analogous way as in Part 2, damage-plasticity arises on point B defined by 

m/ Mσ =y   ,   m2/ Mσ 2+2q1 xcosh (q2m/2 Mσ )-1-q3x2=0

and y(x) is defined by the implicit relation

y2+2q1x cosh( 2
1 q2 y) -1-q3 x2=0 ,    uxx≤≤0

By derivation we have

[2y+q1q2x sinh(q2y/2)](dy/dx)/2=-[q1cosh(q2y/2)-q3x]

The brackets on the right hand side satisfies to the inequalities

q1cosh(q2y/2)-q3x≥ q1cosh(q2y/2)-q3xu=q1[ cosh(q2y/2)-1]+( q1
2
 -q3)1/2>0

since  xu is the maximum value of  x. So the derivative  dy/dx is negative and the 
function y(x) is decreasing. Finally we have y(0)=1 and y(xu)=0. We note also that 
the graph of the function  y(x) may be obtained by the inverse function  x(y) since 
y(x) is a monotonic function. The result is

q3 x(y)=q1cosh(q2y/2)-[q1
2ch2(q2y/2)-q3(1-y2)]1/2  ,  0 1≤≤y

and if  q3=q1
2, q2=1, we recover the expression of x(y) given in Part 2. Finally we 

remark that the only condition on the parameters q1, q2, q3 is q1
2-q3

0≥
.

6. Conclusion

The objective of this paper was to show the ability of the method initiated in Part 2 
to various generalized Gurson conditions. The main result is the necessity to restrict 
the Gurson yield condition by the von Mises yield condition on the matrix material. 
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In fact it must be noted that the damage-free matrix material evolves together with 
the damaged porous material,  satisfying to its own yield condition whatever the 
evolution  of  the porous  material.  Also the natural  background to  introduce the 
matrix material in an explicit manner is to consider the simultaneous evolutions of 
two  representative  material  elements,  a  free-damage  element  accompanying  a 
damaged element, as it was proposed in the reference [10], by taking account of 
large strains [15]. Then it becomes evident that the matrix yield condition restricts 
the porous material yield condition.
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