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Abstract

The development of improved ductile damage models for plastically anisotropic
materials has received limited attention in the literature. We derive a new
yield criterion for materials containing spheroidal voids embedded in a Hill-
type orthotropic matrix. The coupling of void shape evolution with the plas-
tic anisotropy of the matrix leads to improved predictions for the yield sur-
face as well as the evolution of microstructural variables. An alternative nu-
merical approach is also developed to derive rigorous upper-bounds to the
yield loci for anisotropic porous materials of a given microstructure. Un-
der conditions of transverse isotropy, i.e. spheroidal voids in a transversely
isotropic matrix, and axisymmetric loading, the numerical approach deliv-
ers quasi-exact results. Comparison of the analytical and numerical yield
loci for selected material properties indicates significant improvements with
respect to previous models from the literature.

1 Introduction

Various models of damage accumulation in the form of void growth leading to
fracture in ductile materials have been developed over the past decades. One of the
most widely used models is that of Gurson [1] who employed a micromechanics-
based approach to develop a yield function for a porsatsopic material and the
associated evolution equations for the scalar damage variables. The model has
been successful in predicting various experimentally observed features of ductile
fracture such as the cup-cone fracture of a uniaxial tensile specimen [2] and the
formation of shear bands under plane-strain conditions [3].

Despite the fact that the Gurson model provides good results for the yield locus,
especially under conditions of high stress triaxiality, previous finite-element stud-
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ies [4] have shown that accurate quantitative predictiodarhage evolution in
periodically voided unit-cells requires the introductiofrcertain heuristic param-
eters in the model. However, the physical significance dfalparameters remains
unclear. In addition, most refined predictions of ductilecture in notched bars
still suffer from some heuristics, especially under agsigoading conditions [5].
This could be attributed to the fact that the model negldwttfect ofanisotropy

in the material response, which may be initially presennduced by the defor-
mation, e.g. the texture of rolled metals and void shapeutonl. For instance,
Fig. 1 shows typical trends from finite-element calculasiononducted by the
authors, on periodic unit-cells containing spheroidablgoembedded in a trans-
versely isotropic Hill matrix and subjected to proportibagisymmetric loading.
The material properties were chosen to be representativmsé observed in real
materials. It is interesting to note that there is a subtlati@ship between the
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Figure 1. Finite-element calculations that illustrate tbffect of material
anisotropy on the effective response of cylindrical umilisccontaining spheroidal
voids of initial aspect ratiav, (a) stress—strain response (b) evolution of porosity.

anisotropy due to the void shape and that of the matrix. lddéappears that the
effect of initial void shape may be negated for certain typlesnisotropic materi-
als. The trends observed in Fig. 1 confirm that material arupy plays a major
role in the evolution of the flow stress as well as the porosity

While various models have been developed that treat the dasenespherical
voids [6-8], there have been fewer studies that incorpanateffect of anisotropy
due to the material texture [9, 10]. Of these, the models ablat al. [9] was re-
stricted to the case of thin sheets with cylindrical throdiglckness voids while
the study by Benzerga and Besson [10] mainly focused on splhgadls. There
clearly is a need for the development of an improved ductilmage model from
first principles that incorporates both the anisotropy @f tiatrix and the shape
evolution of the voids on the macroscopic response. Coupigdancriterion for
void coalescence, the new model could potentially yielehifigantly improved
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predictions for the ductility of a variety of practically portant materials.

In this paper, we present a new micromechanics-based yigddion for materi-
als containing a dilute distribution of spheroidal voidsaitdill-type orthotropic
matrix. The criterion is derived using the upper-bound apph of homogeniza-
tion and limit-analysis and extends the previous resulSabganu et al. [8] on
void shape effects and Benzerga and Besson [10] on matersalteopy. Recent
studies [11, 12] have attempted to tackle the above probtetuding a previous
study by the authors [12] under the restrictive assumptfaxsymmetric load-
ing paths. The present results represent a rigorous geraiah of our earlier
results [12] to arbitrary loading paths and, unlike in [14f address the issue
of microstructure evolution. It is demonstrated that thes reiterion is consis-
tent with previously established results [8, 10] in the appiate special cases
and reduces to the Gurson [1] criterion in the fully isotmopase. For validation
purposes, we also derive upper-bound yield loci for speaiiiterial properties
using a numerical limit-analysis approach whereby a largenber of trial ve-
locity fields are used to describe the micro-deformatiordfiéMoreover, unlike
in the analytical derivations, no approximations are idtrced in the numerical
approach so that the derived yield loci represent rigorggebounds to the true
yield loci for these materials. Comparison with the numéneaults indicate that
the analytical yield criterion provides significant impeoeents with respect to
previous models.

2 Approximate Analytical Yield Criterion
2.1 Approach

The effective yield criterion for a porous anisotropic nmeties determined through
homogenization of a representative volume element (RVEphfmef) that con-
tains a second void phase that occupies volumé&he kinematic approach of the
Hill-Mandel [13,14] homogenization theory is used, wherthie RVE is subjected
to homogeneous deformation rate boundary conditions. Td&@scopic stress,
3, and rate of deformatio), for the RVE are given by

Y={o)e, D=(d)e (1)

whereo andd are the corresponding microscopic fields within the RVE ahgl
denotes the volume average over the RVE. The macroscoicsyigace in stress
space is determined using the classical limit-analysisrdra, which is strictly
valid for infinitesimal transformations, given by

o1l
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Here,II(D) is the macroscopic plastic dissipation defined as the infirnftithe
volume-average of the microscopic plastic dissipatigd), the infimum being
calculated over all admissible microscopic deformatioldsieFormally,

(D) = Inf (r(d))a 3)

1
K(D) = {d’3y7 Vg € Q, dij = §(Ui,j + Uj,i) andv& € GQ, v = DE} (4)
For a given deviatod, the microscopic plastic dissipation is defined as

m(d) =supo*:d (5)
o*eC
the supremum being taken over all microscopic stressehatithin the micro-
scopic convex of elasticity.

For the present problem, the RVE is taken to be a spheroid rofadeHill or-
thotropic material, containing a confocal spheroidal vaftith a; andb; as the
axial and transverse semi-axes of the void andind b, representing the cor-
responding values for the RVE, the geometry is completefindd by two di-
mensionless variables, the porosify,= a;b?/a,b%, and the void aspect ratio,
w = ay/b;. The matrix is taken to obey the Hill [15] quadratic yieldterion,

which writes
3
aeqzwﬁa’:]h:a"gal, (6)

whereo’ is the stress deviator and whergis the yield stress of the material in
one of the directions of orthotropy, chosen arbitrarilye Bymmetric fourth order
tensorh represents the Hill orthotropy tensor in deviatoric stigsace [10].

Rigorous upper-bounds to the macroscopic yield criteriog bederived using
equation (2) and an upper-bound estimateli¢D). The latter may be obtained
by evaluation of the infimum in equation (3) using a finite dkinematically ad-
missible velocity fields. If the trial velocity fields are sl®to the true deformation
field in the RVE, one can hope to obtain a tight upper-bountdeceffective yield
locus using the above approach. In our analytical deriaatiove follow a two-
field approach as in previous works [1,8,10] and decompastiti velocity field
into a homogeneous field derived from a uniform deviatonaistrate,B, and a
non-homogeneous axisymmetric field,, aligned with the void axis, responsible
for the expansion of the void. l.e.

v=Av*+B-z, tr(B)=0 in (7)

The field,v4, is taken to be a linear combination of four velocity field®sén
from the infinite double series of incompressible axisymioeelocity fields pro-
posed by Lee and Mear [6], corresponding to the field coeffisiByg, Bag, Ba21, Bas.
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The kinematic boundary conditions (4) may be used to detexmtiandB as a
function of the imposed boundary deformation-radde,

For the chosen set of trial velocity fields in (7), equatiopng@n be used in con-
junction with (3) to obtain a parametric representationha yield locus, where
the ratios of the components Dfact as the parameters. Elimination of the param-
eters leads to the explicit equation for the effective yletnis. The mathematical
complexity inherent in the above steps necessitates tradinttion of certain ap-
proximations to obtain the closed form yield function. Doespace constraints,
the derivation is omitted here and the interested readefésred to [16] for the
details.

2.2 Yidd Criterion

Following the above approach a closed-form expressiorhtoetfective yield cri-
terion is obtained, which is formally similar to the critemi previously developed
by Gologanu et al. [8]. We obtain
3YX-H:X X: X
C5=—5—+2(g+1)(g+f) cosh (
1

) —(9+1)>=(g+f)*=0 (8)

where the fourth order tensdii, denotes the ‘effective plastic anisotropy tensor’,
defined by

01

H=J+7X®Q):h:(J+7Q®X) 9

Here,J is the deviatoric projection operator given py= 1 — %1 ® 1, wherel
and1 are the fourth and second order identity tensors respéctiVéne plastic
anisotropy of the matrix enters the criterion above via tiietéhsor in deviatoric
stress spacey, and a tensoh which is a formal inverse oh via the relation
J:h:J:5h:J=1J. The tensor&X andQ are tied to the void orientation by

X = 042(21 e +e® Qz) + (1 - 2@2)23 & e3 (10)
1
QE_§(§1 ®epte,®e)+eg®es (11)

where ¢4, e,, e5) is a Cartesian frame with, aligned with the void axis and the
directions ofe,, e, chosen arbitrarily.

The parameter§', 1, x, g anda, that appear in the yield criterion (8) are functions
of the microstructural variableg, andw. In addition, these depend on material
anisotropy via three scalar anisotropy factors given by

By + hoy + dhgs — Ahog — 4hgy + 201

h
6

(12)

b = har + has 4 2heg — 2h1s b has + hss
t — ) a
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Whereizij denote the components of the fourth order tefisaxpressed in Voigt
notation, in the framee(, e,, e;) introduced above. The functional forms of these
parameters are provided in [16].

3 Numerical Upper-Bound Yield Criterion

The effective yield surface of a porous material may be ddfaleernatively as
the envelope of hyper-planes in stress space

> :D =II(D) (13)

where the components @ act as the parameters. We may use equation (13) to
estimate the yield stress for an axisymmetric state of l@pdbout the void axis,

i.e. a stress state of the forlh = ¥11(e; ® €; + €5 ® €5) + Xz3e5 @ 5. Using
(13), we write

TI(Dy1, Day, Ds3) P (14)

Y= :
"7 Dy + Dyy + X D S

One can compute the right-hand term in equatibf), using a similar decompo-
sition of the trial velocity field into a non-homogeneoussgxnmetric field com-
posed of Lee-Mear field components and a homogeneous devigdd, as in the
derivation of the analytical model. However, one can ineladmuch larger num-
ber of Lee-Mear fields in the numerical minimization and, enmnportantly, the
analysis can be performed without recourse to approximstiso that the result
represents a rigorous upper-bound for the true yield péilso, in the important
special case of transverse isotropy of the material abeuvéid axis, the true
velocity field will be axisymmetric and the derived yield ppmay be considered
guasi-exact, i.e. exact up to the number of Lee-Mear fieldpmmants used in the
minimization. However, it must be noted that the upper-bound obtainetedn t
general case of an orthotropic matrix with no axis of symgnetitl not be quasi-
exact, since all but one of the velocity fields used in the mizakminimization
are axisymmetric. By varying the stress ratio, the yield locus in the plane of
axisymmetric loading may be constructed, which shall hite be referred to
as the numerical upper-bound yield locus.

4 Results

In this section, we present comparisons of the analyticatylioci for selected
anisotropic materials with the numerical upper-bounddyieci. Fig. 2 shows

We assume here that the Lee-Mear fields represent the cenfpletly of incompressible
axisymmetric velocity fields.



the results for two different transversely isotropic miater for which the void
axis is assumed to be aligned with the axis of symmetry of ta&irm The Hill
coefficients for these materials are chosen from [10] andespond roughly to
experimentally observed values for thin sheets offAl€ hy = hg = 0.667, hg =
1.17,hy = hy = 2.75) and Zircaloy i = ho = hg = 2.33,h3 = 0.333,hy =
hs = 1.00) respectively. The numerical upper-bound yield loci arevah using
discrete points while the analytical loci are plotted usswdjd lines. Fig. 2(a)
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Figure 2: Comparison of the analytical and numerical yield for (a) prolate
cavities withw = 5 in Al (b) prolate cavities witho = 5 in Zircaloy (c) oblate
cavities withw = 1/5in Al (d) oblate cavities withv = 1/5 in Zircaloy and three
values of the porosity. The solid curve correspond to thdy#nal criterion of

eqguation (8) and the dotted curve corresponds to the Guiggie]ld locus for an
isotropic material of equal porosity.

and 2(b) show the results for prolate cavities of aspeab,rati= 5, and three
different values of porosity, for Al and Zircaloy respeetiy. Fig. 2(c) and 2(d)
show similar results for oblate cavities of aspect ratio- 1/5. For comparison
purposes, in each case the Gurson [1] yield locus for a quureing isotropic
material (same volume fraction of spherical voids in anrigat matrix) is shown
superimposed using dotted lines. It is evident that the nedaicaptures well the
effect of material anisotropy (void shape as well as flow@negpy of the matrix)
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on the yield locus. The fact that the yield function gives@sel approximation of
the true yield locus has important implications for the jcdn of microstructure
evolution, since, as discussed in the following sectioaavolution equations for
f andw depend on the plastic strain rate, which is normal to thedyseirface.
Therefore, a good analytical approximation of the yieldi®translates into better
predictions for the evolution of the microstructure.

5 Microstructure Evolution Laws

The evolution of porosityf, is obtained from the normality flow rule along with
the plastic incompressibility of the matrix. This yields

- v » A OF

f=0-puD), D=Azc (15)
whereD? is the plastic deformation raté; is the yield function of the left-hand
side of equation (8) and is the plastic multiplier. The evolution of void aspect
ratio is determined using an approximate method, sincerugekeeral loading
conditions the shape of an initially spheroidal void willoéxe into an ellipsoid.
However, if we interprety as the aspect ratio of of an ‘equivalent’ spheroidal void
of equal volume at every instant, whose lateral semi-axisjs the geometric
mean of the two lateral semi-axes of the ellipsoid, one cawsh a straightfor-
ward way that the evolution law far is given by

1

w = 5(2D§3 — DY} — Dgy)w (16)

whereD" is the ‘average’ deformation rate of the void.
Extending the classical analysis of Eshelby [17] for anased void in an infinite
linear viscous matrix, Ponte Castaneda et al. [7, 18] haveatkbexpressions for

the average deformation rai®,’, and spinf2”, of an ellipsoidal void in a finitely
porous non-linearly viscous material. These may be writen

D'=A:D?, Q'=Q-C:Dr (17)

where(2 is the continuum spin tensor. The fourth-order tengoendC are the
strain-rate and spin ‘concentration’ tensors, which avemgby

A=[1-(01- S|, C=-(1-)I:A (18)

whereS and ] are the Eshelby tensors for strain and rotation respegtji&]].
Simplified expressions & and I for the case of spheroidal void shapes are pro-
vided in [17]. It is worth noting that the above results are\a® using the as-
sumption that the matrix material is isotropic, which is trag in the present case.
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However, one can see that sirldé in (17) is derived from the yield function us-
ing the associated flow rule and hence is a function of matmiaotropy,D” and
1Y depend implicitly on material anisotropy. Our numericaidiés comparing
the model predictions for void shape evolution to the respast porous finite-
element unit-cells made of Hill orthotropic materials (aEcompanying paper in
this proceedings) indicate that equatidfi); provides a good agreement with the
finite-element results under axisymmetric proportionaldiog with a triaxiality
(ratio of the mean stress to the Von Mises effective stregsnity. Hence we
formally adopt equation&l7); and(17), to describe the shape evolution and spin
of spheroidal voids in an anisotropic matrix. However, jpvag numerical studies
have shown that equatigi7); yields poor results for the void shape evolution
under conditions of high triaxiality and non-linear matbghavior. We are cur-
rently investigating the possibility of incorporating sreffect of triaxiality on the
evolution equations (17).

6 Conclusion

The framework of Hill-Mandel homogenization and limit-&ss has been used
to derive a new yield criterion for anisotropic porous miaerincorporating void
shape evolution and flow anisotropy of the matrix. Compasserth numeri-
cal simulations indicate that the model captures well tiieceébf anisotropy on
the material response. Coupled with an appropriate voidesoahce criterion,
the richer description of the material microstructure ia #malytical model is ex-
pected to yield better predictions for the ductility of stwral materials under
complex loading conditions.
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