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Abstract

The development of improved ductile damage models for plastically anisotropic
materials has received limited attention in the literature. We derive a new
yield criterion for materials containing spheroidal voids embedded in a Hill-
type orthotropic matrix. The coupling of void shape evolution with the plas-
tic anisotropy of the matrix leads to improved predictions for the yield sur-
face as well as the evolution of microstructural variables. An alternative nu-
merical approach is also developed to derive rigorous upper-bounds to the
yield loci for anisotropic porous materials of a given microstructure. Un-
der conditions of transverse isotropy, i.e. spheroidal voids in a transversely
isotropic matrix, and axisymmetric loading, the numerical approach deliv-
ers quasi-exact results. Comparison of the analytical and numerical yield
loci for selected material properties indicates significant improvements with
respect to previous models from the literature.

1 Introduction

Various models of damage accumulation in the form of void growth leading to
fracture in ductile materials have been developed over the past decades. One of the
most widely used models is that of Gurson [1] who employed a micromechanics-
based approach to develop a yield function for a porousisotropic material and the
associated evolution equations for the scalar damage variables. The model has
been successful in predicting various experimentally observed features of ductile
fracture such as the cup-cone fracture of a uniaxial tensile specimen [2] and the
formation of shear bands under plane-strain conditions [3].

Despite the fact that the Gurson model provides good results for the yield locus,
especially under conditions of high stress triaxiality, previous finite-element stud-
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ies [4] have shown that accurate quantitative prediction ofdamage evolution in
periodically voided unit-cells requires the introductionof certain heuristic param-
eters in the model. However, the physical significance of these parameters remains
unclear. In addition, most refined predictions of ductile fracture in notched bars
still suffer from some heuristics, especially under arbitrary loading conditions [5].
This could be attributed to the fact that the model neglects the effect ofanisotropy
in the material response, which may be initially present or induced by the defor-
mation, e.g. the texture of rolled metals and void shape evolution. For instance,
Fig. 1 shows typical trends from finite-element calculations, conducted by the
authors, on periodic unit-cells containing spheroidal voids embedded in a trans-
versely isotropic Hill matrix and subjected to proportional axisymmetric loading.
The material properties were chosen to be representative ofthose observed in real
materials. It is interesting to note that there is a subtle relationship between the
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Figure 1: Finite-element calculations that illustrate theeffect of material
anisotropy on the effective response of cylindrical unit-cells containing spheroidal
voids of initial aspect ratiow0 (a) stress–strain response (b) evolution of porosity.

anisotropy due to the void shape and that of the matrix. Indeed, it appears that the
effect of initial void shape may be negated for certain typesof anisotropic materi-
als. The trends observed in Fig. 1 confirm that material anisotropy plays a major
role in the evolution of the flow stress as well as the porosity.

While various models have been developed that treat the case of non-spherical
voids [6–8], there have been fewer studies that incorporatethe effect of anisotropy
due to the material texture [9, 10]. Of these, the models of Liao et al. [9] was re-
stricted to the case of thin sheets with cylindrical through-thickness voids while
the study by Benzerga and Besson [10] mainly focused on spherical voids. There
clearly is a need for the development of an improved ductile damage model from
first principles that incorporates both the anisotropy of the matrix and the shape
evolution of the voids on the macroscopic response. Coupled with a criterion for
void coalescence, the new model could potentially yield significantly improved
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predictions for the ductility of a variety of practically important materials.

In this paper, we present a new micromechanics-based yield criterion for materi-
als containing a dilute distribution of spheroidal voids ina Hill-type orthotropic
matrix. The criterion is derived using the upper-bound approach of homogeniza-
tion and limit-analysis and extends the previous results ofGologanu et al. [8] on
void shape effects and Benzerga and Besson [10] on material anisotropy. Recent
studies [11, 12] have attempted to tackle the above problem,including a previous
study by the authors [12] under the restrictive assumption of axisymmetric load-
ing paths. The present results represent a rigorous generalization of our earlier
results [12] to arbitrary loading paths and, unlike in [11],we address the issue
of microstructure evolution. It is demonstrated that the new criterion is consis-
tent with previously established results [8, 10] in the appropriate special cases
and reduces to the Gurson [1] criterion in the fully isotropic case. For validation
purposes, we also derive upper-bound yield loci for specificmaterial properties
using a numerical limit-analysis approach whereby a largernumber of trial ve-
locity fields are used to describe the micro-deformation field. Moreover, unlike
in the analytical derivations, no approximations are introduced in the numerical
approach so that the derived yield loci represent rigorous upper-bounds to the true
yield loci for these materials. Comparison with the numerical results indicate that
the analytical yield criterion provides significant improvements with respect to
previous models.

2 Approximate Analytical Yield Criterion

2.1 Approach

The effective yield criterion for a porous anisotropic material is determined through
homogenization of a representative volume element (RVE) ofvolumeΩ that con-
tains a second void phase that occupies volumeω. The kinematic approach of the
Hill-Mandel [13,14] homogenization theory is used, wherein the RVE is subjected
to homogeneous deformation rate boundary conditions. The macroscopic stress,
Σ, and rate of deformation,D, for the RVE are given by

Σ = 〈σ〉Ω, D = 〈d〉Ω (1)

whereσ andd are the corresponding microscopic fields within the RVE and〈·〉Ω
denotes the volume average over the RVE. The macroscopic yield surface in stress
space is determined using the classical limit-analysis theorem, which is strictly
valid for infinitesimal transformations, given by

Σ =
∂Π

∂D
(D) (2)

3



Here,Π(D) is the macroscopic plastic dissipation defined as the infimumof the
volume-average of the microscopic plastic dissipationπ(d), the infimum being
calculated over all admissible microscopic deformation fields. Formally,

Π(D) = inf
d∈K(D)

〈π(d)〉Ω (3)

K(D) = {d|∃v,∀x ∈ Ω, dij =
1

2
(vi,j + vj,i) and∀x ∈ ∂Ω, v = D.x} (4)

For a given deviatord, the microscopic plastic dissipation is defined as

π(d) = sup
σ
∗∈C

σ
∗ : d (5)

the supremum being taken over all microscopic stresses thatfall within the micro-
scopic convexC of elasticity.

For the present problem, the RVE is taken to be a spheroid madeof a Hill or-
thotropic material, containing a confocal spheroidal void. With a1 andb1 as the
axial and transverse semi-axes of the void anda2 and b2 representing the cor-
responding values for the RVE, the geometry is completely defined by two di-
mensionless variables, the porosity,f = a1b

2
1/a2b

2
2, and the void aspect ratio,

w ≡ a1/b1. The matrix is taken to obey the Hill [15] quadratic yield criterion,
which writes

σeq ≡

√

3

2
σ

′ : h : σ
′ ≤ σ1, (6)

whereσ

′

is the stress deviator and whereσ1 is the yield stress of the material in
one of the directions of orthotropy, chosen arbitrarily. The symmetric fourth order
tensorh represents the Hill orthotropy tensor in deviatoric stressspace [10].

Rigorous upper-bounds to the macroscopic yield criterion may be derived using
equation (2) and an upper-bound estimate forΠ(D). The latter may be obtained
by evaluation of the infimum in equation (3) using a finite set of kinematically ad-
missible velocity fields. If the trial velocity fields are close to the true deformation
field in the RVE, one can hope to obtain a tight upper-bound to the effective yield
locus using the above approach. In our analytical derivations, we follow a two-
field approach as in previous works [1,8,10] and decompose the trial velocity field
into a homogeneous field derived from a uniform deviatoric strain-rate,B, and a
non-homogeneous axisymmetric field,vA, aligned with the void axis, responsible
for the expansion of the void. I.e.

v = AvA + B · x, tr(B) = 0 in Ω (7)

The field,vA, is taken to be a linear combination of four velocity fields chosen
from the infinite double series of incompressible axisymmetric velocity fields pro-
posed by Lee and Mear [6], corresponding to the field coefficientsB00, B20, B21, B22.

4



The kinematic boundary conditions (4) may be used to determineA andB as a
function of the imposed boundary deformation-rate,D.

For the chosen set of trial velocity fields in (7), equation (2) can be used in con-
junction with (3) to obtain a parametric representation of the yield locus, where
the ratios of the components ofD act as the parameters. Elimination of the param-
eters leads to the explicit equation for the effective yieldlocus. The mathematical
complexity inherent in the above steps necessitates the introduction of certain ap-
proximations to obtain the closed form yield function. Due to space constraints,
the derivation is omitted here and the interested reader is referred to [16] for the
details.

2.2 Yield Criterion

Following the above approach a closed-form expression for the effective yield cri-
terion is obtained, which is formally similar to the criterion previously developed
by Gologanu et al. [8]. We obtain

C
3

2

Σ : H : Σ

σ2
1

+2(g +1)(g +f) cosh

(

κ
Σ : X

σ1

)

− (g +1)2 − (g +f)2 = 0 (8)

where the fourth order tensor,H, denotes the ‘effective plastic anisotropy tensor’,
defined by

H ≡ (J + ηX ⊗ Q) : h : (J + ηQ ⊗ X) (9)

Here,J is the deviatoric projection operator given byJ = 1 − 1
3
1 ⊗ 1, where1

and1 are the fourth and second order identity tensors respectively. The plastic
anisotropy of the matrix enters the criterion above via the Hill tensor in deviatoric
stress space,h, and a tensor̂h which is a formal inverse ofh via the relation
J : h : J : ĥ : J = J. The tensorsX andQ are tied to the void orientation by

X ≡ α2(e1 ⊗ e1 + e2 ⊗ e2) + (1 − 2α2)e3 ⊗ e3 (10)

Q ≡ −
1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3 (11)

where (e1, e2, e3) is a Cartesian frame withe3 aligned with the void axis and the
directions ofe1, e2 chosen arbitrarily.

The parametersC, η, κ, g andα2 that appear in the yield criterion (8) are functions
of the microstructural variables,f andw. In addition, these depend on material
anisotropy via three scalar anisotropy factors given by

h =
ĥ11 + ĥ22 + 4ĥ33 − 4ĥ23 − 4ĥ31 + 2ĥ12

6

ht ≡
ĥ11 + ĥ22 + 2ĥ66 − 2ĥ12

4
, ha ≡

ĥ44 + ĥ55

2

(12)
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whereĥij denote the components of the fourth order tensorĥ, expressed in Voigt
notation, in the frame (e1, e2, e3) introduced above. The functional forms of these
parameters are provided in [16].

3 Numerical Upper-Bound Yield Criterion

The effective yield surface of a porous material may be defined alternatively as
the envelope of hyper-planes in stress space

Σ : D = Π(D) (13)

where the components ofD act as the parameters. We may use equation (13) to
estimate the yield stress for an axisymmetric state of loading about the void axis,
i.e. a stress state of the formΣ = Σ11(e1 ⊗ e1 + e2 ⊗ e2) + Σ33e3 ⊗ e3. Using
(13), we write

Σ11 =
Π(D11, D22, D33)

D11 + D22 + XD33

, X ≡
Σ33

Σ11

(14)

One can compute the right-hand term in equation(14)1 using a similar decompo-
sition of the trial velocity field into a non-homogeneous axisymmetric field com-
posed of Lee-Mear field components and a homogeneous deviatoric field, as in the
derivation of the analytical model. However, one can include a much larger num-
ber of Lee-Mear fields in the numerical minimization and, more importantly, the
analysis can be performed without recourse to approximations, so that the result
represents a rigorous upper-bound for the true yield point.Also, in the important
special case of transverse isotropy of the material about the void axis, the true
velocity field will be axisymmetric and the derived yield point may be considered
quasi-exact, i.e. exact up to the number of Lee-Mear field components used in the
minimization1. However, it must be noted that the upper-bound obtained in the
general case of an orthotropic matrix with no axis of symmetry will not be quasi-
exact, since all but one of the velocity fields used in the numerical minimization
are axisymmetric. By varying the stress ratio,X, the yield locus in the plane of
axisymmetric loading may be constructed, which shall henceforth be referred to
as the numerical upper-bound yield locus.

4 Results

In this section, we present comparisons of the analytical yield loci for selected
anisotropic materials with the numerical upper-bound yield loci. Fig. 2 shows

1We assume here that the Lee-Mear fields represent the complete family of incompressible
axisymmetric velocity fields.
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the results for two different transversely isotropic materials, for which the void
axis is assumed to be aligned with the axis of symmetry of the matrix. The Hill
coefficients for these materials are chosen from [10] and correspond roughly to
experimentally observed values for thin sheets of Al (h1 = h2 = h6 = 0.667, h3 =
1.17, h4 = h5 = 2.75) and Zircaloy (h1 = h2 = h6 = 2.33, h3 = 0.333, h4 =
h5 = 1.00) respectively. The numerical upper-bound yield loci are shown using
discrete points while the analytical loci are plotted usingsolid lines. Fig. 2(a)
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Figure 2: Comparison of the analytical and numerical yield loci for (a) prolate
cavities withw = 5 in Al (b) prolate cavities withw = 5 in Zircaloy (c) oblate
cavities withw = 1/5 in Al (d) oblate cavities withw = 1/5 in Zircaloy and three
values of the porosity. The solid curve correspond to the analytical criterion of
equation (8) and the dotted curve corresponds to the Gurson [1] yield locus for an
isotropic material of equal porosity.

and 2(b) show the results for prolate cavities of aspect ratio, w = 5, and three
different values of porosity, for Al and Zircaloy respectively. Fig. 2(c) and 2(d)
show similar results for oblate cavities of aspect ratio,w = 1/5. For comparison
purposes, in each case the Gurson [1] yield locus for a corresponding isotropic
material (same volume fraction of spherical voids in an isotropic matrix) is shown
superimposed using dotted lines. It is evident that the new model captures well the
effect of material anisotropy (void shape as well as flow anisotropy of the matrix)
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on the yield locus. The fact that the yield function gives a close approximation of
the true yield locus has important implications for the prediction of microstructure
evolution, since, as discussed in the following section, the evolution equations for
f andw depend on the plastic strain rate, which is normal to the yield surface.
Therefore, a good analytical approximation of the yield locus translates into better
predictions for the evolution of the microstructure.

5 Microstructure Evolution Laws

The evolution of porosity,f , is obtained from the normality flow rule along with
the plastic incompressibility of the matrix. This yields

ḟ = (1 − f) tr(Dp), Dp = Λ
∂F

∂Σ
(15)

whereDp is the plastic deformation rate,F is the yield function of the left-hand
side of equation (8) andΛ is the plastic multiplier. The evolution of void aspect
ratio is determined using an approximate method, since under general loading
conditions the shape of an initially spheroidal void will evolve into an ellipsoid.
However, if we interpretw as the aspect ratio of of an ‘equivalent’ spheroidal void
of equal volume at every instant, whose lateral semi-axis,b1, is the geometric
mean of the two lateral semi-axes of the ellipsoid, one can show in a straightfor-
ward way that the evolution law forw is given by

ẇ =
1

2
(2Dv

33 − Dv
11 − Dv

22)w (16)

whereDv is the ‘average’ deformation rate of the void.

Extending the classical analysis of Eshelby [17] for an isolated void in an infinite
linear viscous matrix, Ponte Castaneda et al. [7, 18] have derived expressions for
the average deformation rate,Dv, and spin,Ωv, of an ellipsoidal void in a finitely
porous non-linearly viscous material. These may be writtenas

Dv = A : Dp, Ωv = Ω − C : Dp (17)

whereΩ is the continuum spin tensor. The fourth-order tensorsA andC are the
strain-rate and spin ‘concentration’ tensors, which are given by

A = [1− (1 − f)S]−1, C = −(1 − f)Π : A (18)

whereS andΠ are the Eshelby tensors for strain and rotation respectively [17].
Simplified expressions ofS andΠ for the case of spheroidal void shapes are pro-
vided in [17]. It is worth noting that the above results are derived using the as-
sumption that the matrix material is isotropic, which is nottrue in the present case.
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However, one can see that sinceDp in (17) is derived from the yield function us-
ing the associated flow rule and hence is a function of material anisotropy,Dv and
Ωv depend implicitly on material anisotropy. Our numerical studies comparing
the model predictions for void shape evolution to the response of porous finite-
element unit-cells made of Hill orthotropic materials (cf.accompanying paper in
this proceedings) indicate that equation(17)1 provides a good agreement with the
finite-element results under axisymmetric proportional loading with a triaxiality
(ratio of the mean stress to the Von Mises effective stress) of unity. Hence we
formally adopt equations(17)1 and(17)2 to describe the shape evolution and spin
of spheroidal voids in an anisotropic matrix. However, previous numerical studies
have shown that equation(17)1 yields poor results for the void shape evolution
under conditions of high triaxiality and non-linear matrixbehavior. We are cur-
rently investigating the possibility of incorporating this effect of triaxiality on the
evolution equations (17).

6 Conclusion

The framework of Hill-Mandel homogenization and limit-analysis has been used
to derive a new yield criterion for anisotropic porous materials incorporating void
shape evolution and flow anisotropy of the matrix. Comparisons with numeri-
cal simulations indicate that the model captures well the effect of anisotropy on
the material response. Coupled with an appropriate void coalescence criterion,
the richer description of the material microstructure in the analytical model is ex-
pected to yield better predictions for the ductility of structural materials under
complex loading conditions.
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