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Abstract: A method for constructing R-curve has been developed. Three 

constraint theories (T-stress, Q-stress and A2) have been used to construct 

constraint-dependent R-curves. The predicted R-curves have been compared 

against test results taken from published literature. A comparison of the predicted 

constraint based R-curves against the testing result was given. It is shown that the 

developed method provides an efficient approach to obtain R-curves under low 

constraint and can potentially be used for engineering critical assessment (ECA) 

in various industry sectors. 

 

1. Introduction 

For a cracked component, the fracture initiation toughness J1c determines when 

the crack extension initiates and the fracture resistance curve (i.e., R-curve) is 

concerned with how far the crack will grow in a stable manner under an applied 

load. From the view of single-parameter fracture mechanics, the J1c and R-curve 

are considered sufficient to describe the crack tip condition in fracture analyses of 

engineering structures. The assumption behind the single-parameter theory is that 

the J1c and R-curve obtained from laboratory are transferable to a full-scale 

structure. In practice, however, the fracture initiation toughness and fracture 

resistance curve are dependent on the test specimen geometry and loading mode. 

This dependence is attributed to the constraint effect at the crack tip. Standard 

laboratory testing specimens are typically of high constraint which appears to 

underestimate the fracture initiation toughness when the actual cracked structure 

is under low constraint. A typical example of the transferability problems is 

observed in performing ECA of pipe girth welds. Pisarski and Wignall [1] 

suggested that use of specimen geometries and loading modes associated with 

lower constraint such as single edge notched tension (SENT) and shallow- 

notched single edge notched bending (SENB) specimens, allow improved 

estimates of fracture toughness to be obtained that are appropriate for the 

assessment of circumferential flaws in pipe girth welds. 

 

Due to their simplicity, the T-stress and the Q-stress are frequently used for 

quantifying constraint at the crack tip. By combining the constraint parameter 

with a loading parameter such as stress intensity factor K or J-integral, two-

parameter fracture mechanics (2PFM) is sufficient for describing the stress, strain 

or displacement field at a crack tip for different degrees of constraint.  

 

Constraint-based approaches for determining the material fracture initiation 

toughness J1c are described in industry codes such as R6 [2] where empirical 
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formulas to calculate the T-stress and Q-stress have been given. However, these 

codes tend not to give a quantitative description of the effect of constraint on the 

R-curve. Various experiments have suggested that the R-curve depends on the 

level of constraint. Joyce and Link [3] have shown that the constraint level can 

affect the prediction of crack initiation. In general, a specimen with a low 

constraint level tends to give a higher R-curve than a specimen associated with a 

high constraint level (Fig. 1).  

 
Fig. 1 Constraint effect on R-curves 

The present paper focuses on the effect of constraint on the R-curve using 

constraint parameters (T-stress, Q-stress, A2). The J-A2 approach was developed 

by Yang et al [4] and has been recently used to quantify the constraint effect on 

fracture toughness for different geometry and loading modes [5]. In this paper, 

three constraint theories are first briefly reviewed. A framework to construct the 

R-curve is then developed and demonstrated. The predicted constraint-dependent 

R-curves are then compared against test results.   

 

2. Review of Constraint Theories  

2.1 J-T approach 

The T-stress represents a stress parallel to the crack surface near the crack front. 

Although derived from linear elastic analysis of structures containing a crack 

under small-scale yielding (SSY), it has been shown that the T-stress can also be 

used in elastic-plastic fracture analysis. In terms of calculation, the T-stress 

approach requires only a linear-elastic analysis rather than an elastic-plastic 

analysis of the cracked structure. There is a considerable debate on the use of T-

stress when large-scale yielding (LSY) occurs. Theoretically, the principle of T-

stress is lost under LSY. However, Parks [6] has shown that the T-stress can still 

be a corrector of near tip stress tri-axiality under this condition.  

 

2.2 J-Q approach 

The limitation of the T-stress approach in large scale yielding can be overcome by 

using a J-Q approach. The parameter Q is a hydrostatic or tri-axiality term in the 

stress field at the crack tip. Q can be defined based on either an HRR field or an 

SSY field. The Q factor may be expressed as  

( ) ijHRRijij Q δσσσ 0+=      (1) 

or  



   
 

( ) ijSSYijij Q δσσσ 0+=   (2) 

where ijσ  is the crack tip stress, 0σ  is the yield stress and δ is the Kronecker 

delta. Numerical studies reveal that the use of the SSY field improves the radial 

independence of Q (therefore J-Q theory) compared to using a reference solution 

based on HRR. One deficiency of the Q approach is that Q is distance and load 

dependent under LSY. As a result, Q appears not to be a satisfactory constraint 

parameter in the analysis of ductile crack growth [7]. 

 

2.3 J-A2 approach 

The J-A2 approach is based on the theoretical elastic-plastic asymptotic stress 

fields at the crack tip under plane strain conditions in a power-law hardening 

material. Yang et al [3] demonstrated that the first three terms in the asymptotic 

series solution for the stress can characterize the crack tip mechanics fields within 

r/(J/ 0σ )=5 where r is the radial coordinate in the local polar coordinate system 

with the origin at the crack tip. These three terms however are not independent 

with each other and they can be expressed using two parameters. As an example, 

the stress near a crack tip using the J-A2 approach may be written as 
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where A1 and A2 are the two parameters used to characterise the crack tip stress 

field. The first term in the above expression corresponds to the stress from HRR 

field, ie, 
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in which α , n  are the hardening parameters and 0ε  is initial yield strain. The 
remaining two terms in Eq.3 refer to the higher order stress terms. The 
parameter nI , stress power exponents ks  and angular function )(~ k

ijσ  (i, j, k=1,2,3) 
are only dependent of the hardening exponent and have been tabulated by Chao 
and Zhang [8]. The parameter L is a characteristic length which can be chosen as 
crack length, specimen width, thickness or unity.  
 

The value of A2 can be determined directly by comparing the calculated stress 

from finite element analysis (FEA) at the crack tip with Eq.3. Alternatively, A2 

can be determined through the relationship between A2 and Q-stress which can be 

obtained by comparing the theoretical crack tip stresses predicted by J-Q theory 

with the stresses from J-A2 theory.  

 

2.4 Bending specimens under large-scale yielding 

The two-parameter characterisation of the elastic-plastic fields near the crack tip 
is suitable for shallow cracked specimens. However, these approaches break down 
in the case of deep bend specimens under LSY or fully plastic deformation 
because the global bending stress significantly alters the stress fields near the 



   
 

crack tip. A possible way to solve this problem is to develop a new parameter that 
characterizes the global bending stress near the crack tip. Methodologies in this 
category are referred to as three-parameter fracture mechanics in the present 
paper. These include J-Q-k2 [9], J-Qt-Qp [10] and modified J-A2 theory [11].  
 
In the J-Q-k2 theory, Q and k2 can be inferred from FEA results. However, it is not 
clear whether the parameter k2 is a constraint parameter or a loading parameter. 
The J-Qt-Qp theory is derived from J-Q theory where Q is decomposed into Qt (a 
distance independent term related to T-stress) and Qp (a distance dependent term 
related to the global bending stress field).  
 
The modified J-A2 theory (J-A2-M) introduces an additional bending term M. 
According to Chao et al [11], the global bending stress is a linear function of the 
bending moment, and the opening stress in bending specimens is expressed as 
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where M is the moment per unit length, ie, the moment divided by the thickness 
of the specimen and b=W-a is the un-cracked ligament along the width direction 
where W is the width of the specimen and a is the crack depth.  
 

3 Constraint Effect on R-curve 

Without considering the constraint effect, the R-curve can be approximately fitted 
by a power-law relationship. The ASTM E-1820 gives 
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where 1C  and 2C  are constants and 0.1=k  mm. Note that Eq.7 
assumes 0)0( ==∆aJ . When the constraint effect is included, Eq.7 can be 
modified as  
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where the constraint 2,,ˆ AQT=Φ  depending on the constraint parameter to be 

chosen. The two functions 1C  and 2C  depend on the selected constraint 

parameterΦ . The non-dimensional constraint parameter T̂  is defined by 

normalising the T-stress  by yield stress 0σ , i.e., 
0

ˆ
σ
T

T = . The T-stress has been 

considered for R-curve modelling by Nyhus et al [12]. Eq.8 provides a choice of 

T-stress, Q-stress and A2 for constrained based R-curve modelling. It should be 

note that a similar mathematical expression which uses A2 as a constraint 

parameter was proposed by Chao and Zhu [5]. The difference between the present 

development and the proposed method by Chao and Zhu is that Eq.8 provides a 

more general framework for constraint based R-curve modelling rather than 

focusing on a specific constraint parameter.  

 

In order to mathematically determine the two functions )(1 ΦC  and )(2 ΦC  in Eq.8, 

the J-integral at two distinct crack extension lengths 1a∆  and 2a∆  must be known. 

Because ),( Φ∆aJ  is also a function ofΦ , for a given crack extension length, the 



   
 

mathematical expression of )(ΦJ can be accomplished by a curve fitting of the 

experimental data. It is recommended that a linear curve fitting shall be based on 

at least three data points. Therefore, at least three experimental R-curves at 

different constraint levels should be used to construct the theoretical R-curves. 

Fig. 2 gives a schematic procedure to determine )(1 ΦC  and )(2 ΦC . 

 
As shown in Fig. 2a, assume that J-integral at the two crack extension lengths is 
given by 
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For each crack extension, there are three data points which can be used to fit a 

mathematical function )(Φ∆aJ  (Fig. 2b). By rearranging Eq.9 and using the 

functions obtained from Fig. 2b we have  
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Specifically, when 2a∆ =1 mm, )()(
21 Φ=Φ ∆aJC . If Φ=Φ∆ aJ a )(1  and Φ=Φ∆ bJ a )(2 , 

then 
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determined by using a set of Φ  to obtain numerical result which can then be fitted 

as either a linear or a quadratic relation (Fig. 2c). Once )(1 ΦC  and )(2 ΦC  are 

known for a given material, the R-curve can be predicted for cracked specimens 

with different constraints provided that the constraint Φ  is known. 

 

 
(a)                                   (b)                                        (c) 

Fig. 2 R-curve modelling procedures 

 

4 Application of constraint-based R-curve theories 

4.1 R-curve testing 

Test data measured by Joyce and Link [1] were employed for demonstrating the 

above methodology. The test included a set of SENB and SENT specimens with 

a/W ratios varying from 0.1 to 0.7. The size of the specimens and the crack are 



   
 

given in Table 1 (constraint values are obtained from FEA, see Section 4.2). All 

specimens were side grooved after pre-cracking. 

 

Table 1 Fracture toughness and constraint values 

Specimen Type a/W 
W, 

mm 

B, 

 mm 

JIC,  

N/mm 
T/ 0σ  Q A2 

FYO 10SA SENT 0.35 64 25 187.6 -0.31 -0.51 -0.28 

FYO   2SB SENT 0.40 64 25 148.0 -0.25 -0.43 -0.25 

FYO   3SB SENT 0.47 64 25 217.0 -0.23 -0.42 -0.24 

FYO   4SA SENT 0.65 64 25 227.5 0.22 -0.28 -0.19 

FYO   26 SENB 0.13 50 25 163.7 -0.46 -0.49 -0.26 

FYO   27 SENB 0.14 50 25 173.7 -0.43 -0.45 -0.25 

FYO   150 SENB 0.61 50 25 145.1 0.29 0.14 0 

FYO   151 SENB 0.61 50 25 129.7 0.29 0.13 0 

FYO 21 SENB 0.14 50 50 177.2 -0.43 -0.45 -0.25 

 
The test specimens were made of a high strength structural steel, HY-100. This 
material has a Young’s modulus E =200GPa and a Poisson ratio =ν 0.3. The 
tensile test showed that the 0.2% offset yield stress of HY-100 is 0σ =747MPa 
whereas the ultimate strength is 877MPa.  
 
Joyce and Link [3] gave a range of fracture resistance curves for HY-100 for the 
SENB and SENT specimens (Figures 3 and 4 respectively). These results show 
that deeply-cracked specimens (high constraint) tend to give a lower value of 
resistance compared with the shallow-cracked specimens (low constraint).  
 

 
(a) Deep-cracked    (b) Shallow-cracked 

Fig. 3 R-curves for HY-100 for SENB specimens (Joyce and Link 1995) 

 

 
Fig. 4 R-curves for HY-100 for SENT specimens (Joyce and Link 1995) 



   
 

 

4.2 Determination of constraint parameters using finite element analysis 

Numerical simulation in the present work was carried out using ABAQUS 6.7 for 
the SENB and SENT cases described in section 4.1. Plane strain analyses were 
performed using eight-node quadratic elements with reduced integration 
(CPE8R). A focused mesh was used in the crack tip region. For the SENB 
specimens, a concentrated moment loading was applied on the two edges of the 
specimen. For the SENT specimens, a uniform distributed load was applied at the 
end. 
 
The present analysis employed the Ramberg-Osgood power-law relation which is 
given by 
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where 0σ  is the reference stress, 
E

0
0

σ
ε = is the reference strain, α  is a material 

constant and n  is the strain hardening coefficient. The strain hardening coefficient 

=n 20 was determined based on an equation given in R6 [2]. A J2 deformation 

theory of plasticity was used for multi-axial state deformation. 

 
The T-stress was calculated by ABAQUS from an elastic analysis. A small scale 
yielding analysis was performed in order to determine the Q-stress and the 
parameter A2. The calculated constraint parameters T-stress, Q-stress and A2 are 
listed in Table 1. Note that the values of Q and A2 were taken at the distance 

J/2 0σ  from the crack tip and the load was taken as that corresponding to crack 
initiation reported in [3]. 
 
4.3 Use of T-stress to construct the constraint corrected R-curve  

Using the R-curves measured by Joyce and Link [3], the two functions )ˆ(1 TC  and 

)ˆ(2 TC  can be determined according to Eq.10. Take the two crack extension 

lengths a∆ =0.2 mm and 1=∆a  mm for example. The J-integral at a∆ =0.2 mm 

and 1=∆a  mm as a function of T can be linearly fitted as  

4.138ˆ3.292.0 +−= TJ    (12a) 

9.273ˆ0.1690.1 +− TJ      (12b) 

Substituting Eq.12 into Eq.10, we have 

9.273ˆ0.169)ˆ(1 +−= TTC   (13a) 

In Eq. 10b, the term [ ])(/)(ln 2.00.1 TJTJ  can be numerically calculated with a set of 

T̂ . The function )(2 TC  is obtained by fitting the numerical results, 

43.0ˆ29.0ˆ13.0)ˆ( 2
2 +−−= TTTC     (13b) 

Substitute Eq.13 into Eq.8, we obtain the constraint-modified R-curve for HY-

100,  
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Since the above R-curve contains the constraint parameter, Eq.14 can be used for 

an arbitrary cracked specimen once the constraint for that particular specimen is 

known. Fig. 5 gives comparisons of the predicted R-curve using Eq.14 with the 

results measured for SENT and SENB specimens, respectively. It can be seen that 

the predictions from Eq.14 in general agree well with the measured results.  
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(a) a/W=0.35 (SENT)     (b) a/W=0.47 (SENT) 
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  (c) a/W=0.13  (SENB)   (d) a/W=0.61 (SENB) 

   Fig. 5 Comparisons of predicted R-curves against the testing result 

 

4.4 Use of Q to construct the constraint corrected R-curve  

The procedure to construct the R-curve using the Q parameter is similar to that 

used for the T-stress. Again, take the two crack extension lengths a∆ =0.2 mm and 

1=∆a  mm. The J-integral at a∆ =0.2 mm and 1=∆a  mm as a function of Q can be 

linearly fitted as  

4.1204.892.0 +−= QJ     (15a) 

3.2191.2770.1 +−= QJ     (15b) 

Using a similar procedure to that adopted to obtain Eq.13, the two functions 

)(1 QC  and )(2 QC  are given by 

3.2191.277)(1 +−= QQC  (16a) 

37.026.011.0)( 2
2 +−−= QQQC     (16b) 

Substituting Eq.16 into Eq.8, the constraint-modified R-curve for HY-100 using 

Q stress is given by,  
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The predicted R-curves using Eq.17 are also shown in Fig.5.  

 

4.5 Use of A2 to construct the constraint corrected R-curve  

In the case of A2, the J-integral at a∆ =0.2 mm and 1=∆a  mm as a function of A2 

can be linearly fitted as  

8.1102.181 22.0 +−= AJ    (18a) 

5.1781.615 20.1 +−= AJ      (18b) 

Following the same approach, the functions 1 2( )C A  and 2 2( )C A  can be given by  

5.1781.615)( 221 +−= AAC   (19a) 

32.063.034.0)( 2
2
222 +−−= AAAC     (19b) 

The R-curve using A2 is then given by,  
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5 Discussions 

A comparison of the three predicted R-curves shows that all three parameters can 

be used to construct constraint-based R-curves. It has been argued that T-stress 

and Q-stress will fail under large scale yielding in bending-dominant specimens 

due to the presence of global bending stress which alters the crack tip stress field. 

Zhu and Leis [13] developed a modified J-Q theory to construct constraint-

dependent R-curves for this purpose. However, the present results show that R-

curves predicted with T-stress and Q–stress are within up to about 20% of the test 

results (see Fig. 5d for deeply-cracked SENB specimens). Further investigations 

are needed in order to clarify the validity of the J-Q theory in this region. 

 

6 Conclusions  

This paper has reviewed three constraint theories (T-stress, Q-stress and A2) for 

characterizing the fracture initiation toughness and fracture resistance curve. The 

three constraint parameters were used to construct constraint-corrected R-curves. 

An example was used to demonstrate the validity of the theory by comparing the 

predicted R-curves with the test data at different constraint levels. The method 

can be potentially used for engineering critical assessment of flaws where 

standard tests associated with high constraint give conservative R-curves. 
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