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Abstract: Using finite element method, modified boundary layer model for 
homogeneous and heterogeneous welded joints are analyzed. After investigating 
the relationship of the opening stress at the crack tip in these two cases, a new 
constraint parameter is developed for overmatched welded joints, allowing the 
material mismatching effect on the crack tip stress to be quantified. The new 
constraint parameter is based on the 2J A−  three-term solution which is a 
reasonably good approach to describe the geometry constraint at the crack tip. In 
the case of complete specimens, constraint arising from both geometry and 
material mismatching exists.  The total constraint has been obtained in 
establishing the relationship between 2A  and 2mA which is a new constraint 
parameter related to the mismatch. Finally, using the experimentally determined 
fracture toughness at one mismatch level, we predict the fracture toughness values 
at other mismatch levels. The result is consistent with the experiment data. 
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1. Introduction 
 
The material strength mismatch existed between weld and base metal is an 
important consideration in safety assessment of welded components. Many 
experimental results [1, 2] indicate that the difference of material mismatch and 
geometry can cause different crack tip field state which greatly influences the 
fracture behavior of welded joints. Based on the traditional geometric constraint 
method such as J [3], and JT− Q− [4] approach, some researchers have 
considered material mismatch also as a constraint. Several formulations were 
developed in order to include the total constraint from both the geometry and 
mismatch [5,6].  These two approaches are however inaccurate under large scale 
yielding conditions that are often the case in actual welded steel structures.   In 
this paper, a new parameter 2mA  for material mismatch is proposed to add into the 

 three term solution [7], which is the most accurate in LSY.  Finally, the 
modified  three term solution is validated through comparison with the 
fracture toughness values determined from experiment.  

2J A−

2J A−

 
2.  Separation of two types of constraint 
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2.1   The  three term solution in homogenous materials 2J A−
According to the theory of 2J A−  three term solution, the crack tip stress field of 
mode crack for the hardening exponent  in a power law material can be 
written as: 
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characteristic length parameter which can be chosen as 1 mm. The first term is the 
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where the factor nI only depends on the hardening exponent n . The values of 
( ) ( )k
ijσ θ%  and  are tabulated in Ref. [8]. The constraint parameter kS 2A  can be 

determined by matching the opening stress form (Eq.1) with the finite element 
results at )2~1(s =Jrσ . 

 
2.2   The modified boundary layer (MBL) model 
In order to separate the effect of geometry from material mismatch on the stress 
fields, the MBL model is employed within the context of the finite element 
method. Fig. 1 shows the two models used. The first one, Fig. 1(a), models a weld 
material and a base material with the crack being contained in the centre of the 
weld material and run parallel to the weld/base interface. The second one, Fig. 
1(b), models a homogeneous all weld material situation. In both cases the load is 
applied through displacements applied at the remote circular boundary, which are 
given by the elastic asymptotic stress field of plane strain mode I crack: 
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where  is the Young’s modulus of the material and E ν  is the Poisson’s ratio, 
and  are the displacements along the X  and axis,  and 1u 2u Y r θ are the polar 

co-ordinates centered at the crack tip.  
 
The stress-strain relation follows the Ramberg-Osgood relation with E =200GPa, 
ν =0.3, and the hardening exponent . Former research results indicate that in 
the case of undermatched weld the crack tip stress field is quite irregular [6]. 
Therefore, only overmatched case is considered here which is typical for steel 
weldment. The yield strength of the weld metal is 

=10n

owσ =625MPa.  The mismatch 
ratios = m ow obσ σ considered in this work are 1.1, 1.2, 1.3, 1.4, 1.5, and 1.6 
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which correspond to 568.2MPa, 520.8 MPa, 480.8 MPa,  446.4 MPa,  416.7 MPa,  
and 390.6 MPa of the yield strength of the base metal obσ .  

                     
               

(a) mismatched                                  (b) all weld 
Fig. 1 Boundary layer geometries model 
 

The ABAQUS finite element code is used to analyze the models shown in Fig.1. 
A typical finite element mesh is shown in Fig.2. The mesh represents one-half of 
the specimens since symmetry has been applied. All the meshes have an outer 
boundary radius of 500 mm and the radius of the notch tip is 0.005 mm. Plane 
strain conditions are considered and eight-node plane strain; second order 
isoperimetric elements are used.  
 

           
（a）general mesh                                 (b) The crack tip region mesh 

Fig. 2 Mesh for the boundary layer models 
 
In the model of mismatched weld, shown in Fig.1(a), the T  term in the applied 
displacements (Eq. 2) is equal to zero, and therefore constraint is only due to 
material mismatch. In all weld model of Fig.1(b), different value of geometry 
constraint is obtained by varying the value of T  stress. So the two models 
correspond to the cases of only material constraint and only geometry constraint, 
respectively.  
 
2.3  Results of modified boundary layer model 
For the model shown in Fig. 1(a), the development of the crack tip opening stress 
at a fixed distance ahead of the crack tip, i.e. ow 2r Jσ = , from different 
mismatch is shown in Fig. 3.  In the calculation, the width of the weld h  is kept 
constant, while altering the values of - integral to represent the load level. The 
non-mismatched state  is chosen as a reference case. 

J
1m =

 3 
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We can see from the graph that at the same load level, the larger the mismatch 
ratio m  is, the larger the effect of constraint loss corresponding to lower crack tip 
opening stress compared with the reference stress.  In addition, at the same 
mismatch ratio , the constraint loss is more severe as the load  increases.  m J
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Fig. 3 Normalized opening stress at ow 2r Jσ =  as a function of the load level for 

different mismatch ratios m 
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Fig. 4 Normalized opening stress at ow 2r Jσ =  as a function of the load level for 

different geometry constraint, obtained from homogenous modified boundary 
layer model. 

 
Similarly, for the all weld model shown in Fig. 1(b), the value of the parameter 

2A  corresponding to the different geometry constraint is obtained and the 
development of the crack tip opening stress with the load is shown in Fig. 4 for  
different T , which corresponding to different 2A  , The 0T =  case is chosen as a 
reference case. 
 
We can also see from Fig.4 that at the same load level, lower 2A  yields greater 
geometry constraint and lower opening stress compared with the reference state. 
In addition, at the same 2A , the larger load or J yields more severe geometry 
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constraint loss. 
 
3. The modified three term solution for welded structure 2J A−
 
3.1 The mismatch constraint parameter 2mA  
Results in Figs 3 and 4 demonstrate that similar behavior exists between the 
welded joints with T = 0, where constraint is only due to material mismatch, and 
those of homogeneous materials with different values of the constraint parameter 

2A , where the constraint loss is only due to geometry.  
 
By comparing Figs. 3 and 4, at each load level owh Jσ , one seeks out the stress 
corresponding to each mismatching ratio m  from Fig.3, find the value of 2A  
corresponding to this stress value from Fig.4, then, a relation between m  and 2A  
can be found.  Fig.5 shows these results where the solid line is the fitted curve 
given as  

3 2
2 0.4 1.79 2.72 1.18A m m m= − + − +                                       (3) 
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Fig. 5 Mismatch ratio and geometry constraint relationship 

 
With the relation in Eq. (3), one can define a mismatch constraint parameter 2mA  
to scale the effect of constraint due to mismatch.  Eq. (3) now becomes  

3 2
2 0.4 1.79 2.72 1.03mA m m m= − + − +                                    (4) 

Note that when  (no mismatch)1m = 2 0.15A = − , the constant term in Eq. (3), i.e. 
1.18, is adjusted to 1.03 in Eq. (4) to reflect this observation.  Eq. (4) indicates 
that the constraint level for each mismatched weld of ratio m  in a weld can be 
uniquely determined by the value of 2mA  . 
 
In specimens or structures, both geometry constraint and material mismatch are 
present.  As both decrease the stress field as shown in Figs 3 and 4, so the total 
constraint can be 2 2mA A+ .  In other words, in a weld structure the crack tip stress 
field of power-law hardening material in mode Ι case can be expressed as:  
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Eq. (5) is the modified  solution in welded structure. 2J A− 2mA  is a function of 
the mismatch of the weld and be obtained from Eq. (4). Other parameters are from 
homogeneous materials as discussed in 2.1.  

 
3.2 Application of the modified solution 
In homogeneous material, the 2J A−  solution is valid in both small scale yielding 
(SSY) and large scale yielding (LSY). But in welded structure, the mismatching 
constraint 2mA  exist (see Eq(5)), so we must first analyze its validity to 
characterize the crack tip stress fields. To do this, two three-point bend specimens 
with  and  with a weld strip of width 2  located in the 
center of the specimen were analyzed using the finite element method (FEM). 

/ 0.1a w = 5 5/ 0.a w = h

 
Fig.6 shows the finite element results of the crack tip opening stress ahead of the 
crack tip. It can be seen that, at the load level shown in Fig.6, the stress predicted 
by the modified  solution agree better than those by the  solution 
alone, as compared with those from FEM. 
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(a) , / 0.15a w = 1.4m =                          (b)  / 0.5a w = ,  1.4m =
Fig. 6 Comparison the crack tip fields of 2J A−  solution, modified  

solution and FEM. 
2J A−

 
Fig.7 shows the crack tip opening stress at various load level for the configuration 

 and , which the constraint losses due to both geometry and 
material mismatch are maximum. In 

1.6m = / 0.1a w = 5
owa Jσ , the crack tip a  is kept constant, 

while altering the values of J- integral to represent the load level. If one 
establishes an error formula as  
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It can be seen from Fig 7 that the modified 2J A−  solution has an error within 5% 
in the range of (10,120)owa Jσ ∈ . Note that the load range encompasses both 
SSY and LSY in Fig 7.  It is then concluded that the modified 2J A−  solution can 
well predict the crack tip stress field of general welded specimen in both SSY and 
LSY. 
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Fig. 7 Comparison of the opening stress at ow 2r Jσ =  : modified  
results with finite element solutions 

2J A−

 
4 The constraint -modified J R−  curves of welded structure 
 
Cracks in ductile materials may exhibit J R−  curve behavior.  Here the modified 

 three-term solution is used to modify the 2J A− J R−  resistance curves for 
welded structure. 
 
Fig.8 contains the J  resistance curves obtained from Ref.[9], The J R  
resistance curve of the 1, 2, 3, 4 in Fig.8 is , 

,  , and . 

Extending the J-R curve to include the constraint 

R− −

( )0.583800.61RJ a= Δ

( )0.515488.84RJ a= Δ ( )0.528444.25RJ = Δa ( )0.567393.43RJ a= Δ

2A , one has [10] 

( ) ( )
( )22

212,
AC

k
aACAaJ ⎟

⎠
⎞

⎜
⎝
⎛ Δ

=Δ  

The coefficients ,  are unknown and depend upon the constraint  
at the crack tip for a specific material and specimen, and 

( )21 AC ( 22 AC ) 2A
mm0.1=k .  In modified 

 method for welds, the only difference is that geometry constraint  now 
becomes the total constraint 

2AJ − 2A

2 2mA A+ . Or, the RJ −  resistance curve of welded 
specimen is expressed as 

( )( ) ( )mAAC
mm aAACAAaJ 222

22122 ),( +Δ+=+Δ                                (6) 
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Applying the method discussed in section 3.1, the total constraint +  of the 
four cases in Fig. 8 are -0.377, -0.324, -0.314, -0.261 respectively. 
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Fig. 8 Resistance curves of welded specimens at different material mismatch m 

and different crack length.  1. / 0.2 1.a w m 6=    =    2. / 0.2a w m 1=    = ,    3. 
   4. / 0.5 1.a w m=    = 6 1/ 0.5a w m=    = . 

 
To calculate the expression of ( )1 2 2mC A ,A+ ( )2 2 2mC A A+ , using J  integral 

under the case of Δ =0.2mm, a aΔ  =1.0mm, the unknown value C A  

and C A  can be obtained from the following two equations: 
( )1 2 2mA+

)A+
)

)

(2 2 2m

( ) ( )( ) (2 2 2

0.2 0.2 2 2 1 2 2 0.2 mC A A
mm mm m mJ J A A C A A += + = +             (7) 

( ) ( )( ) (2 2 2

1.0 1.0 2 2 1 2 2 1.0 mC A A
mm mm m mJ J A A C A A += + = +              (8) 
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(a)                                                                           (b) 

Fig. 9 Total constraint and corresponding   and  value 0.2R mmJ 1R mmJ
 
For the four cases shown in Fig.8, we obtained the corresponding relationships 
between  and ,  and mmRJ 2.0 mAA 22 + mmRJ 1 mAA 22 +  and are shown in Fig.9 (a) 
(b), The solid line is from the fitting result as follows: 

( )0.2 2 21362 203.4R mm mJ A A= − + −                                       (9) 
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Substituting the result of (9) (10) into (7) (8), another two expressions are 
obtained as 

( ) ( )2
1 2 2 2 239387 21581 3343R mm m mJ A A A A= + + + +               (10) 

( )( ) ( ) ( )2 2 2

1 2 2 2 20.2 1362 203.4mC A A
m mC A A A A++ = − + −

m +

)

m +

                    (11) 

( )( ) ( ) ( ) ( )2 2 2 2
2 2 2 2 2 2 21.0 39387 21581 3343mC A A

m mC A A A A A A++ = + + +   (12) 

( )1 2 2mC A A+ ,  can be determined from formulae (11) and (12): (2 2 2mC A A+

( ) ( ) ( )2
1 2 2 2 2 2 239387 21581 3343m m mC A A A A A A+ = + + + +          (13) 

( ) ( ) ( )2
2 2 2 2 2 2 293.2 59.6 9.9m m mC A A A A A A+ = + + + +                    (14) 

Substituting (13) and (14) into formula (6), finally the modified J curve 
which contains both constraints from 

R−
geometry and mismatch is then obtained as 

( ) ( ) ( )

]( ) ( ) ( )2
2 2 2 2

2
2 2 2 2 2 2

93.2 59.6 9.9

, 39387 21581

3343 m m

m m

A A A A

J a A A A A A A

a
⎡ ⎤+ + + +⎢ ⎥⎣ ⎦

⎡Δ + = + + +⎣

                               Δ
            (15) 

Eq. (15) is the predicted formula for J R− curves of the welded specimen of Ref 
[9]. For welded specimens of the same materials but at other constraint level, once 
the total constraint is known, its J R−  curve can then be predicted using Eq(15). 
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Fig. 10 Comparisons of  J R−  curves between experimental data and the 

prediction by Eq 15. 
 

The experimental J  curves of m =1.4, =0.5 and m =1.4, =0.24 
from Ref.[9] are reported as and  

respectively. The predicted results according to Eq.15 are  

and  respectively. Comparison between the experimentally 
determined J-R curve [9] and the prediction using Eq. 15 is shown in Fig.10 which 
shows a good agreement. 

R− /a w /a w
( )0.534419.42RJ a= Δ ( )0.540723.78RJ a= Δ

a

( )0.392424.77RJ a= Δ

( )0.538692.10RJ = Δ

 
5.  Conclusion 
A mismatch constraint parameter 2mA  is defined and developed in this paper. By 
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using this parameter,  three-term solution of homogeneous material is 
extended to the welded material having material mismatch. The constraint in the 

 three-term solution now includes both effects from the material mismatch 
and 

2AJ −

2AJ −
geometry. The modified J R−  curves obtained from the modified  

three-term solution are also able to predict the 
2AJ −

J R−  curves of other specimens 
made of the same material or other mismatching ratio.  The procedure provides a 
useful methodology in dealing with the fracture in welded joints when material 
mismatch is present. 
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