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1 Introduction

A variational free-discontinuity formulation of brittle fracture was given by Franc-
fort and Marigo [1], where the total energy is minimized with respect to the crack
geometry and the displacement field simultaneously. The entire evolution of cracks
including their initiation and branching is determined by this minimization princi-
ple requiring no further criterion. However, a direct numerical discretization of the
model faces considerable difficulties as the displacement field is discontinuous in
the presence of cracks.
A regularized approximation of the model, which is more suitable for a numeri-
cal treatment, has been presented by Bourdin in [2, 3]. The underlying theory of
Γ-convergence is exposed e.g. in [4]. An additional field variable s is introduced
to model changes in the stiffness of the material. In this work, we interpret the
variable s as an order parameter of a phase field model with an evolution equation
of the Ginzburg-Landau type, similar to earlier phase field models for fracture, e.g.
[5, 6]. The application of a phase field approach to crack propagation is possible
with some modifications, taking the irreversible character of crack propagation into
account. The numerical implementation is performed with finite elements and an
implicit time integration scheme. Crack propagation, branching, and initiation is
observed in different numerical examples.

2 A phase field model for fracture

In Bourdin’s regularized model, cracks are represented by a field variable s which
is 1 if the material is undamaged and 0 if there is a crack. Thus s can be viewed as a
damage parameter in elastic damage models. The total energy E of a linear elastic
body with stiffness tensor C and crack resistance G depends on the displacement
field u and the crack indicator s

E(u, s) =

∫
Ω

1

2
(s2 + η) ε(u) : Cε(u) + G

(
(1− s)2

4ε
+ ε |∇s|2

)
︸ ︷︷ ︸

=Ψ(u,s)

dV . (1)

In Eq. (1) the potential of external loads is neglected for the sake of simplicity only.
The first term in Eq. (1) is the elastic strain energy density. The infinitesimal strain
tensor ε is related to the displacement field u by

ε(u) =
1

2

(
∇u + (∇u)T

)
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and the elastic stresses σ are derived from the energy density Ψ by

σ =
∂Ψ

∂ε
= (s2 + η)C ε .

The factor (s2 + η) models the stiffness loss between an undamaged (s = 1) and
a broken material (s = 0). The term ηC with 0 < η � 1 is the residual stiffness
if s = 0. For numerical reasons (stability) η may not be chosen too small. How-
ever, too large values for η overestimate the bulk energy in fractured zones. In the
absence of volume forces, the equilibrium condition reads

div σ = 0 . (2)

The second term in Eq. (1) represents the surface/crack energy. The width of the
transition area between undamaged solid and broken material is controled by the
parameter ε which has the dimension of a length [7]. With ε tending to zero, the
transition area turns into a sharp interface and the regularized energy converges to
the original energy expression by Francfort and Marigo which is the same as in
classical Griffith fracture mechanics.
Interpreting s as an order parameter of a phase field model, the evolution is gov-
erned by a Ginzburg-Landau type evolution equation which is derived from the
energy density Ψ [8]:

ṡ = −M · δΨ

δs
= −M

(
s ε : Cε− 2 G ε ∆s +

1

2

G

ε
(s− 1)

)
, (3)

where M ≥ 0 is a mobility constant. Eq. (3) has to be slightly modified in order
to take account of the irreversible character of crack propagation. Two different
strategies to avoid crack healing are possible:

• either fix s, if it is close to 0,

• or set ṡ to 0, if
δΨ

δs
< 0, so that ṡ ≤ 0 holds.

The first alternative is used in the simulations of section 4.

2.1 1D stationary problem

To get a better understanding of the meaning of ε,
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Figure 1: Cracked bar

the 1D example of a bar of length 2L with a crack
in the centre is analysed. Neglecting the elastic
energy and considering a stationary problem Eq.
(3) yields in

−1

2
= −s(x)

2
+ 2ε2s′′(x)

with −L ≤ x ≤ +L. The solution with a crack in the centre (at x = 0) is given by

s±(x) = 1−cosh
( x

2ε

)
± coth

(
L

2ε

)
sinh

( x

2ε

)
, (+ for x ≥ 0, − for x < 0).
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Fig. 1 shows a plot of the solution s(x) for different values of ε. Large values of ε
smoothen the crack field, whereas the limit ε → 0 yields a discontinuous function
which is 0 at x = 0 and 1 elsewhere.

Inserting the solution s(x) into the expression for the surface energy, one can re-
cover the crack resistance G letting ε → 0.

Esurf = G

∫ +L

−L

(1− s)2

4 ε
+ ε s′2dx =

G

2

(
coth

(
L

2ε

)
+ coth

(
L

2ε

))
ε→0
= G

3 Numerical implementation

The fracture model is implemented into a finite element framework with the dis-
placements u and the order parameter s as nodal degrees of freedom. With virtual
displacements δu and δs, the weak forms of Eq. (2) and Eq. (3) read∫

Ω

∇δu · σ dV =

∫
∂Ωt

δu · t∗n dA (4)

and∫
Ω

[
δs

ṡ

M
−∇δs · q + δs

(
sε : Cε +

G

2ε
(s− 1)

)]
dV =

∫
∂Ωq

δs q∗n dA (5)

with q = −2G ε∇s. The boundary conditions for the stresses σ and for q are pre-
scribed by t∗n and q∗n.

In a 2D setting using Voigt-notation - denoted by an underbar in the following - the
discretization of u and s with shape functions NI for node I is given by

u =
N∑

I=1

NIûI , ε =
N∑

I=1

[Bu
I ]ûI ,

s =
N∑

I=1

NI ŝI , ∇s =
N∑

I=1

[Bs
I ]ŝI ,

with

[Bu
I ] =

NI,x 0
0 NI,y

NI,y NI,x

 and [Bs
I ] =

[
NI,x

NI,y

]
.

Inserting these discretizations into the left hand sides of Eq. (4) and Eq. (5), one
obtains the residuals

[
RI

]
=

[
Ru

I

Rs
I

]
=

∫
Ω

 [Bu
I ]T σ

NI
ṡ

M
− [Bs

I ]
T q + NI

(
s εT·C ε +

G

2 ε
(s− 1)

) dV .

3



The tangent matrix
[
KIJ

]
as well as the stiffness matrix

[
DIJ

]
are symmetric and

given by

[
KIJ

]
=

∫
Ω

[Bu
I ]T (s2 + η)C [Bu

J ] [Bu
I ]T 2sC εNJ

NI2s(C ε)T [Bu
J ] 2G ε [Bs

I ]
T [Bs

J ]+NI

(
εT·C ε +

G

2 ε

)
NJ

dV

and

[
DIJ

]
=

∫
Ω

[
0 0

0
1

M
NINJ

]
dV .

Gauss quadrature is used to evaluate the integrals and the time integration of the
transient terms is done with the backward Euler method. An automatic step size
control is helpful for the simulations because of the rapidly decreasing stiffness
during fracture.

4 Results

The equations have been implemented into a quadrilateral plane strain element.
Some results from simulations of different 2D problems are shown in this section.
In all calculations isotropic material with Lamé constants λ = µ = 22 kN

mm2 is con-
sidered. The scaling factor for the residual stiffness is η = 10−5.

4.1 Mode I loading of a plate with initial crack

Fig. 2 shows the setup for a plate (b = 10 cm)

initial crack

b

σ

σ

y

x

a = b
4

Figure 2: Experimental setup

with an initial crack under mode I loading which is
used in the numerical simulations of this section.
Exploiting the symmetry of the sample only the
upper half of the structure is considered in the nu-
merical model. Near the crack a uniform quadratic
grid of mesh size h = 0.3125 mm is used for the
discretization. The system is initially unstrained
and then loaded by a linearly increasing tension

σ(t) = σ0 ·
t

t0
with

σ0

t0
= 600

N
cm2sec

.

The initial crack is modeled by setting s(x, y) to
zero, where 0 ≤ x ≤ a and y = 0. However,
this manipulation of the s-field produces an unsta-
ble situation, which is an undesirable starting point
for the simulations. Therefore one static iteration
is performed to find a stress free, stationary state

(ṡ = 0) to start from. The contour plots in Fig. 3 show the situation before and after
the static iteration step for ε = 6 mm. The initially sharp line which indicates the
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               Time = 0.00E+00

Figure 3: Contour plots of s a) before and b) after the starting step

crack in Fig. 3a) is smoothened in the stationary state shown in Fig. 3b). The pa-
rameter ε controls how much the initially sharp interface is smoothened in the static
iteration step. This is illustrated in Fig. 4. The plot shows nodal values of s along
the positive y-axis in the stationary state for different values of ε. If ε is sufficiently
small, the values are in good agreement with the analytic results obtained from the
1D stationary example of section 2.1.
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Figure 4: Nodal values of s (stars) along the y-axis for different values of ε com-
pared to the analytic 1D solution (solid line)
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For the setup shown in Fig. 2 an analytical solution in terms of stress intensity
factors is available in [9]:

KI = σ
√

πa

√
2b

πa
tan

(πa

2b

)
· C

(a

b

)
(6)

with

C
(a

b

)
=

0.752 + 2.02a
b

+ 0.37
(
1− sin

(
πa
2b

))3

cos
(

πa
2b

) .

According to Griffith’s criterion a crack will grow if the released strain energy is
large enough to form the new crack surfaces. In a plane strain setting Griffith’s
crack growth criterion [10] reads

1− ν2

E
K2

I ≥ G . (7)

From Eq. (7) together with Eq. (6) the critical value σcrit for the mode I stress load
is given by

σcrit =

√
E

1− ν2

G

2b tan
(

πa
2b

) · C (a

b

)−1

.

In the numerical simulation the
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Figure 5: Start of crack propagation for differ-
ent values of G (stars) compared to the analytic
solution (solid line)

stress load increases linearly with
time and the crack growth should
start at time tcrit = σcrit

σ0
t0. Fig. 5

shows how the numerical simu-
lations compare with the analyt-
ical results for Griffith’s model.
Here the lengthscale parameter ε
and the mobility constant M are

ε = 0.625 mm and

M = 5.0
cm2

N · sec
.

The crack resistance G is varied
from 0.25 to 10.0 N

mm . The start
of crack propagation is defined
as the time when the s-value of
the first node in front of the ini-
tial crack becomes zero. With the chosen values for the parameters ε and M the
numerical values for the start of crack propagation lie close to the analytic curve
from the Griffith criterion.
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4.2 Influence of the mobility parameter M

The same example as in section 4.1 was chosen to study the influence of the mobil-
ity constant M on the crack propagation behaviour. The parameter ε and the crack
resistance G are held constant at

ε = 0.625 mm and G = 1.0
N

mm
,

whereas the mobility M is varied in a range from 0.01 to 10 cm2

N·sec .
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Figure 6: Position of the crack tip versus time for a) stress load and b) displacement
load

To track the crack tip the nodal val-
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Figure 7: Crack tip velocity versus mobility
M

ues of the crack field s along the
positive x-axis are recorded. The
node with the largest x-coordinate
where s equals zero is defined as
the crack tip position.

The two plots of Fig. 6 show curves
describing the crack tip position as
a function of time for different val-
ues of M . The same stress load
as in the previous calculations was
used in the simulations for Fig. 6a),
whereas in the simulations for Fig.
6b) a linearly increasing displace-
ment load was applied instead of
the stress load. Similarly for both loading cases, small values of M significantly
delay the start of the crack propagation.
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In the stress loading case (Fig. 6a) the crack grows instantaneously at time t ≈ 3 sec
for any sufficiently large M . In this case the solution can be considered as sta-
tionary. In the transient solutions for smaller values of M , the crack tip velocity
immediately after the start of the crack propagation is significantly dependent on
M . However, after this starting phase, when the crack tip reaches the middle of the
sample x ≈ 5 cm the further cracking is also instantaneous.

In the displacement load simulations (Fig. 6b), stable crack growth can be observed
and the crack tip velocity can be measured by finding the slope of the curve. After
the crack tip passes x = 5 cm the velocity can be regarded as constant. A linear
regression analysis of the curves where the crack tip position is between 5.0 and
8.5 cm gives the velocities shown in Fig. 7.

4.3 Mode I loading of a plate with circular hole
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Figure 8: Contour plots of s a) for G = 0.25 N
mm b) for G = 1.0 N

mm .

In this simulation an initially undamaged plate (20× 20 cm) with a circular hole of
radius r = 2.5 cm under a mode I displacement load is considered. The stiffness
parameters λ, µ, and η are the same as in the previous examples. The mobility
constant is set to M = 5 cm2

N·sec . Again, exploiting the symmetry of the structure, the
numerical model consists of only one quarter of the plate. 150 × 150 elements are
used for the discretization and the length parameter ε is 1 mm. Fig. 8 shows contour
plots of s of the fully cracked plate for G = 0.25 N

mm and G = 1.0 N
mm , respectively.

In both cases the crack initiates at the place of highest stress concentration, i.e. at
the hole. With further increased loads the crack propagates in horizontal direction.
In case of the lower value for G (Fig. 8a), the crack branches before the plate is
fully cracked, whereas no branching occurs for G = 1.0 N

mm (Fig. 8b). This is due
to the fact that for higher values of G more energy is needed to create new crack
surfaces.
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5 Summary

Minimization of the total energy with respect to the displacement field and the crack
field is the basic principle of Bourdin’s regularized fracture model. Contrary to
[2, 3, 11] where the minimization is performed with an alternate minimizations
algorithm, we interpret the crack variable as the order parameter of a phase field
model and address cracking as a phase transition problem. Therefore a Ginzburg-
Landau type evolution equation and an additional parameter, the mobility M , had
to be introduced to the model. The influence of this newly introduced constant
on the crack propagation behaviour has been explored in a simple mode I simula-
tion. Sufficiently large values produce quasi-stationary solutions which are in good
agreement with the classical Griffith model, while small values of M significantly
delay the crack propagation. Extending the scope of Griffith’s model, our phase
field formulation, as well as Bourdin’s model, needs no extra criterion to simulate
crack initiation and branching.
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