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Abstract 
 

The damage propagation and the thermal conductivity of a gold nanowire are studied using 
molecular dynamics methods. The frequency spectra of stresses in the wire are also investigated 
for persistent features that correlate with bulk material behavior.  The material is modeled using 
atomic scale representative volume elements with a finite dimension along one dimension and 
infinite dimensions in two others.  The initial state temperature, pressure and volume states for 
the material are determined using a slow and sequential equilibrium procedure that produces a 
convergent energy and stress states. Finite size cracks surfaces are artificially created and the 
changes in the dynamic stress states are observed. The frequencies of the dominant modes and 
the amplitude of the stress at these modes are described. The shift in the frequency of the lowest 
dominant mode due to cracking and the increase in the concentration show some of the persistent 
features expected in the stress state due to the presence of a crack.  At selected load steps the 
wire is mechanically equilibriated and thermal conductivity is measured. In order to measure the 
thermal conductivity a temperature gradient is established across a simulation domain by adding 
heat to one group of atoms (hot reservoir) and subtracting heat from another group of atoms 
(cold reservoir).  Results are presented illustrats the thermal conductivity change behavior for a 
selected crack lengths.  

 
 
1. Introduction  

The studies at the nanoscale with atomistic building blocks have been widely used in the 
past. Particularly, molecular dynamics (MD) methods are increasingly being used to study the 
mechanical behavior of nanostructures [1-3].  A continuum based model proposed by Griffith to 
predict the onset of crack growth in brittle material was based on equating the available strain 
energy to that required for creation of new crack surfaces. Early atomistic simulations of fracture 
were carried out by Ashurst and Hoover [4] in which they compared the free energies of finite 
element model and a bead-spring model in a triangular lattice. Later Abraham and coworkers [5] 
simulated the brittle fracture of a material using molecular dynamics models consisting of 
million atoms and with Lennard-Jones (LJ) inter-atomic potential. Zhou et al. [6] described 
fracture as the energy release by bond breakage which accumulates in a local phonon field and 
moves with the crack tip. Xu et al. [7] performed molecular dynamics simulation on ductile 
material and computed the virial stress field around the crack tip and its evolution during the 
crack growth.     

Relating the virial stress computed from the atomistic scale to continuum stress has seen 
some controversy in the recent time. Different approaches were used to find stress measures 



2 
 

from atomistic simulations have been used. Basinski, et al. [8] based their calculation on a 
volumetric partition of the bulk homogeneous stress tensor. They have assumed that the bulk 
stress tensor which is valid for homogeneously deforming solids continues to characterize the 
stress state in a small volume about an atom even in an inhomogeneously deforming atomic 
assemblage.  Hardy [9] used a finite-valued and finite-ranged localization function to define 
stress about an atom. While the range of this function and the characteristic size of the volume 
that contains atoms contributing to properties at the spatial point chosen can be selected 
arbitrarily, the resulting expression for stress contains terms that theoretically remain constant for 
different size volumes. Zimmerman et al. [10] reviewed Hardy’s formalism and present a 
computational comparison between Hardy’s expression for stress and local volume averages of 
the virial stress within a FCC crystal. Zhou [13] examined the virial stress and stated that it is not 
equivalent to the Cauchy stress if it contains both the kinetic and potential parts. Shen [11] and 
Sun [14] supported this view. However, Subramaniyan et al. [15] reiterated that virial stress is 
equivalent to Cauchy stress when properly averaged over space and time domains.  Thermal 
conductivity of the material can be measured by standard molecular dynamics methods when the heat 
conduction is dominated by phonons. Both equilibrium molecular dynamics (EMD) and non equilibrium 
molecular dynamics (NEMD) methods can be used [18,19]. NEMD is a direct method that relies on 
imposing a temperature gradient across the simulation cell and is therefore analogous to the experimental 
situation, and thermal conductivity is simply evaluated as the ratio between the imposed heat flux and 
temperature gradient.                                                                                                                                                    

In this effort, we examine the fundamental modes in spatially averaged virial stress measures. 
We seek to compare the dynamic behavior of the stress states in the atomic ensemble with the 
bulk continuum behavior of an equivalent structure.  In addition, we create a discrete crack 
which affects both the structural stiffness and the local stress states. In present study, non 
equilibrium molecular dynamics  method is used to obtain thermal conductivity. Effect of the surfaces 
generated during crack growth on the thermal conductivity of the material is investigated. The rest of the 
paper describes the details for the simulations and the observations made in the time and 
frequency domain.  

2. Simulations with Molecular Dynamics 
 

2.1 Configurations  
 

Molecular dynamics (MD) simulations with embedded atom method (EAM) potential are carried 
out. The atoms in the gold ensemble are arranged in a 4.08 Angstrom face centered cubic (fcc) 
lattice as shown in the Fig. 1. The model x, y and z axes are oriented along the [100], [010] and 
[001] crystalline directions, respectively. We consider a 20 cell x 40 cell x 20 cell domain with 
dimensions of 81.6 A x 163.2A x 81.6 A.  There are 64800 atoms in the simulation domain. We 
assume that the model is periodic on the faces with normals along ±x and ±z and has finite 
boundaries at the faces with ±y boundary. The periodic boundary conditions allow the energy to 
flow though the boundary, while ensuring the conservation of momentum and energy, i.e. energy 
flow out of one surface will re-enter from other surfaces. On the finite boundary, the simulation 
box is moved to encompass the atoms along that dimension. The molecular dynamics 
simulations are carried out using LAMMPS MD package [20]. 
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2.2  Interatomic potential and the virial stress measure 

 
The embedded atom method (EAM), developed by Daw and Baskes [16, 17] taken as a model 
for bonding of fcc metals. The EAM potential consists of a many body term representing the 
interaction of an embedding atom core with the electronic charge density of the remaining atoms 
in the system and a pair wise term representing the electrostatic interactions between the atoms 
cores. The many body term is referred to as the embedding function. The total energy E of a 
system of N atoms can be written as 
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where φij is the pair potential function between atoms i and j and rij is the distance between atom 
i and j, while Fi, the embedding term, is the quantum mechanical energy involving the influence 
of electron density. This term can be considered as the energy to embed an atom into an electron 
gas with a density i, which comes from the contributions of neighboring atoms. The electron 
density (ρi) term can be put as 
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where ρi depends only on the distance between two atoms. For a system of atoms in equilibrium 
state, the force that comes from embedding term is balanced with the force derived from pair 
wise interaction term.  In the EAM potential developed by Voter and Chen [12] the atomic 
electron density is 
ሻݎሺߩ  ൌ ଺ሺ݁ିఉಾ௥ݎ ൅ 2ଽ݁ିଶఉಾ௥ሻ (3)  
where βM is an adjustable parameter. The pair wise interaction is described by Morse pair 
potential 
 ߶ሺݎሻ ൌ ெ൛1ܦ െ ݁ିఈಾሺ௥ିோಾሻൟଶ െ   ெ (4)ܦ
where DM , RM , and αM , respectively, are the depth of the potential, the distance to the 
minimum, and a measure of the curvature at the minimum. The value of DM , RM , and αM , β, and 
the cutoff distances rcut at which the function φ(r) and ρ(r) and their derivatives are forced to go 
smoothly to zero. For metallic gold,  the fitting parameters for Morse pair potential are rcut (A) = 
5.5155, βM (1/A) =3.6967, αM (1/A) =1.8964, DM (eV) = 0.6748, RM (A) = 2.5686. 

Virial stress is an averaged measure of the interatomic force interactions of atoms with their 
neighboring atoms. In molecular simulation studies, virial stress averaged over the total volume 
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Ω is often found to be useful to study macroscopic material behavior to analyze stress 
distribution inside the system.  The average virial stress is given as [13] 

where, NR is the number of atoms in the region. mα  is the mass, vi
α is the i-th component of the 

velocity of atom α,  fi
αβ is the i-th component of force between atom α and β; and rj

αβ is the j-th 
component of centre distance between atom α and β.  It can be seen that that Eq. (5) represents 
average atomic stresses for the volume of the periodic box. Here, the first term is associated with 
the contribution from kinetic energy due to thermal vibration and the second term is related to 
change in potential energy due to applied deformation. 

The thermal conductivity relates the heat current to the temperature gradient via Fourier’s law 
as  

Where qμ is the thermal current, ߢఓఔ is an element of thermal conductivity tensor, and ቀ߲ܶ
ఔݔ߲

ൗ ቁ 
is the gradient of the temperature T. 

 

3. Initial state determination 

The gold crystal with infinite boundary condition in x and z directions and finite boundary 
condition in y direction [p s p], is heated from 0 K up to 250 K temperature. The gold lattice is 
first heated from 0 to 50K at 0.083K/ps heating rate for 600ps by using Nose-Hoover 
temperature thermostat and then it is equilibrated at this temperature for another 800ps (dwell) 
by using NVT conditions as  shown in Fig. 2(a). This process of heating and equilibrium is 
repeated for every 50K rise in temperature until an equilibrium temperature of 250K is achieved. 
Although the mean pressure is observed to be low after equilibrating under NVT conditions, 
pressure fluctuations of 1500 bar can be observed. We further equilibrate the gold lattice by 
applying the NPT condition with a barostat set at 0.0001 bar and temperature held at 250K for 
another 3000ps. 
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Figure 2 Case (a): Heating from 0-250K at NVT and then equilibrating at 250K by NPT; 
Case (b): Heating from 0-50K at NVT and then equilibrating at 50K by NPT condition and 
repeating this process for every 50K rise in temperature.  

In another attempt to examine the effect of different equilibrium processes on the total energy, 
gold lattice is first heated at 0.083 K/ps under NVT condition for 600ps and then equilibrated 
under NPT condition for another 800ps at this temperature, shown as case (b) in Fig. 2. This 
heating at NVT and equilibration at NPT process is repeated till the system reaches a 
temperature of 250K. From the Fig. 2 it is evident the both systems attain the same total energy 
at the target temperature of 250K. The mean and standard deviation of pressure after NPT 
condition at 250K is 0 and 126 bar respectively 
 

4. Frequency modes in virial stress at 250 oK  
 

For case (a) after reaching the equilibrium stage the frequency spectrum of hydrostatic stress 
is plotted for last 2000ps as shown in Fig. 3. There are number of frequency peaks present in the 
frequency spectrum and the first frequency peak occur at 43 GHz.   
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Figure 3 Spectrum response of the hydrostatic stress in gold lattice [81.6x163.2x81.6] A3 

without any crack. 

4.1 Frequency response after crack initiation 
 
 A discrete crack is created in the middle of the lattice by removing the pair-wise 
interactions between atoms on both sides of the crack plane. After the crack initiation, the gold 
lattice is equilibrated for another 2000ps under NPT conditions. Separate simulations are run for 
gold lattice with 8A and 16A crack length. The total energies of the system with 8A and 16A 
crack lengths are shown in Fig. 4. The difference in the energy level is attributable to the 
presence of crack surfaces and is seen to be proportional to the area of new surfaces introduced 
into the model.  

 

Figure 4 Equilibrium process before and after crack opening 
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The fundamental mode of vibration determined form the simulation is seen at 43GHz before 
initiation of the crack. This dominant mode shifts to 40 GHz for the model with 8A crack as 
shown in Fig. 5. This shift may be attributed to the change in the stiffness of the structure due to 
the introduction of the crack in the model.  Increasing the size of the crack to 16A reduces the 
frequency of the fundamental mode to 32 GHz consistent with further reduction in the stiffness 
of the model.  

  

Figure 5 Spectral responses of the hydrostatic stress in gold lattice [81.6x163.2x81.6] A3 

with 8A and 16 A cracks. 

 
5. Thermal transport in damaged continua   

 
In order to test the thermal conductivity of the gold lattice, a temperature gradient is 

created by non-translational kinetic energy (heat) to one group of atoms (hot reservoir) and 
subtracting from another (cold reservoir). Heat addition/subtraction is performed every 0.01ps. 
Heat flux, Q, is determined by the change in the aggregate energy of the entire group of atoms.  
Fig. 6 shows the temperature behavior of the hot and cold surfaces for uncracked and cracked 
models The temperature gradient is higher for the model with 10A crack compared to the 
uncracked model showing reduction in the thermal conductivity. The crack size is then varied 
from 2A to 10A in length and the thermal conductivity is measured. Fig. 7 shows that the 
reduction in the thermal conductivity in comparison with the uncracked case.  Nearly 30% 
decrease in the conductivity is seen with a 10A crack.  
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Figure 6 Temperature gradient without any crack and with 10A crack length  

 

  

Figure 7 Thermal conductivity with different size of crack lengths 

 

 

 

10A crack

no crack

Q in

Q out



9 
 

 

6. Concluding remarks 

Whether virial stress is a representation of  Cauchy stress has been questioned in the recent 
times.  Zhou [13] has concluded that the  virial stress is not an equivalent of Cauchy stress and 
only potential energy component of virial stress is relevant.  Subramaniyan and Sun [15] stated 
that the  properly averaged virial stress in time and space represent the Cauchy stress and showed 
that bulk thermal expansion coefficients and thermally induced stresses can be correlated with 
virial stress measures. However, the stress components used in both these studies have been 
averaged spatially as well as temporally. This promulgates the perspective that the temporal 
fluctuation in the states are random instances about a mean state and correlate to neither the 
spatial variations nor the structural vibration states.  In this effort, we investigate the dynamics of 
hydrostatic stress computed and observe the changes in the lowest dominant mode. We note that 
some fundamental modes are persistant in the dynamical stress states and have similarities to 
structural vibration modes. In this study a complete correlation with structural modes has not 
been presented and will be elucidated in near future. Furthermore, we initiate a discrete crack in 
the atomistic model and study its effect on both the fundamental modes and the amplitude of the 
virial stress. The shift in fundamental mode which is consistent with decrease in stiffness 
indicate that the stress behavior consistent that observed in bulk stress fields.  

Next we examined the effect of opening the discrete crack on the thermal conductivity.  
Thermal conductivity of the gold lattice significantly reduces due to presence of the crack. The reduction 
in thermal conductivity with the crack length is parametrically determined using molecular dynamics 
methods. 
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