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Abstract 

 
The application of standard mathematical techniques for the solution of mass 
transport equations, in the case of advection that is caused by the pulsating 
movement of crack walls in the case of corrosion fatigue, can be very time 
consuming.  This problem arises, due to the requirement that the time step that 
must be employed, when solving the non-stationary equations, must be 
significantly smaller than the period of oscillation.  For overcoming these time-
consuming limitations, a simple algorithm, which is based on eliminating the 
convective term from the equations of mass transfer in the pulsating slab by a 
suitable change of variables, was developed.  It is shown that, in many cases, it is 
possible to use codes that were developed for describing stress corrosion cracking, 
i.e. for the case of mass transfer without advection, to predict corrosion fatigue 
crack propagation rate, by simply substituting an effective crack length.  

 
Keywords: corrosion fatigue, stress corrosion cracking, crack growth rate, 
advection 
 

1. Introduction 

Fatigue/crack propagation under periodical mechanical loading in an 
aqueous environment is a direct result of electrochemical and chemical reactions 
occurring within the cavity and on the external surfaces.  The rates of these 
reactions and, accordingly, the influence of the reactions on fatigue crack growth 
rate, depend on the local specie concentrations, temperature, and electrode 
potential that, in turn, depend on mass and charge transfer between the cavity the 
bulk.  In the literature, there can be found several studies devoted to modeling of 
the electrochemistry of corroding cavities (see, for example, [1-6]) and of crack 
propagation rate (see, for example, [7]) under corrosion fatigue conditions 
(periodic loading).  The mathematical description of mass transfer in corrosion 
fatigue cracks is much more complicated than in the corresponding problem under 
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constant load in the case of stress corrosion cracking, due to the presence of 
advection (fluid flow induced by the cyclic displacement of crack walls).  The 
advection term that arises in the mass balance equations does not allow us to 
obtain analytical solutions even for the simplest cases.  Moreover, because the 
hydrodynamic component changes direction during a cycle, it is difficult even to 
predict whether the advection inhibits or enhances propagation of the crack 
(below we show that both possibilities are predicted).  

Advection also greatly complicates the numerical solution of the mass 
transfer equations by complicating the finite difference schemes that are 
commonly employed [8] and forces the modeler to use very small times steps, 
especially at high frequency, f, of wall oscillation.  Thus, in the simplest case of a 
parallel-walled slot with passive sides and an active tip, the time taken for the 
system to approach steady state distributions in species concentrations, and hence 
potential within the cavity, is of the order of tst ≈ L2/D, where L is the crack depth 
and D is the diffusion coefficient of the corroding metal ions (it is assumed that 
the initial concentrations coincide with their bulk values) [9].  If, for example, L = 
1 cm and D = 10-5 cm2/s we have tst ≈ 105 s.  Accordingly, the time step Δt in any 
numerical calculations for diffusional transport must be much less then tst.  
Usually the value of Δt ≈ 10-2 tst is sufficiently small for obtaining satisfactory 
accuracy by applying the usual fully implicit finite difference scheme and, in our 
case, we have taken Δt ≈ 103 s.  The situation is dramatically changed in the 
presence of advection.  It is evident that, in order to fully describe advection, the 
time step Δt must be much less than the period of oscillation T = 1/f of the 
moving walls (let say by factor 10).  This means that if, for example, f = 100 Hz, a 
time step of the order of 10-3 s must be used in this case, i.e. the number of time 
steps (the volume of calculations) increases by a factor of 106 in comparison with 
the absence of advection.  Accordingly, practically in all published works, the 
numerical calculations were performed for relatively low loading frequencies and 
hence for low frequency pulsation of the crack flanks, f, actually for the range f ≤ 
10 Hz.  However, as is well known, in the case, for example, of low pressure 
steam turbines, the blades flex at their natural frequencies.  These frequencies 
may range from 75 Hz (for the lowest mode of a low-pressure blade), to 400 Hz 
or more.  In addition, high-cycle corrosion fatigue experiments at relatively high 
frequencies (up to 100 Hz) are often conducted to conserve time and the results 
are often extrapolated from high frequencies to lower frequencies.  It must also be 
noted that the solution of the transport equations, even for the case of low 
frequencies, f ≈0.1-1 Hz, becomes so time consuming that one is forced to obtain 
the results of the calculations for only a limited range of parameters [2]. 

This paper describes a simple algorithm that is based on the eliminating 
the convective term from the equations of mass transfer in the pulsating slab by a 
suitable change of variables.  In this case, for simplicity, we consider active metal 
dissolution only at the tip of the crack, with the passive current on the crack flanks 
being assumed to be insignificant (the same approximation was used, for 
example, in Refs. 2 and 8).  More precisely, we consider the case when the 
concentration of the dissolved metal ions at the crack tip is fixed (for, example, 
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when it equals the saturation concentration of some precipitated phase) and the 
case when active dissolution at the crack tip is described by Tafel kinetics.   
 
2. Transformation of variables 

In this paper, we will consider the simplest case when metal is dissolved at 
the tip of the long parallel slot with pulsating walls moving in accordance with the 
equation: 

)()( tgwtw m=      (1) 
 

where t is the time, w is the width of the parallel-walled crack, wm is the average 
width of the crevice over the period of oscillation and function g must satisfy 
three important conditions: 
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where 0 < gmin ≤ 1 and gmax ≥ 1 are minimum and maximum values of the function 
g(t), respectively.  These conditions mean that the function g(t) is periodical with 
the period, T, and that wm is really the mean value of w(t) over the period of 
oscillation.  Particularly, in the case of the present analysis, we consider harmonic 
loading and hence 

)sin(1)( ttg ωε+=       (3) 
 
where ω = 2πf is the cyclic loading angular frequency and ε < 1 is a known 
constant. 

The movement of the walls results in a corresponding movement of liquid 
within the crevice with the velocity, V, (averaged across the width of the crack), 
which can be found from the equation of continuity (conservation of mass for 
incompressible liquid flow) in the one dimensional approximation as 
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where x is the distance from the tip of the crevice.  For a parallel slot the velocity 
of the fluid within the cavity can be written as 
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Furthermore, in a one-dimension approximation, the equation of mass transport 
for a species in the solution has the form 
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where Ck is the concentration of species k, Nk is the flux density, RVk is the rate of 
creation of ionic species, k, per unit volume, and Nsk is the flux of species k 
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through the metal-solution interface on the side walls.  According to dilute 
solution theory, the flux of species, k, is given by the Nernst- Planck equation: 
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where Dk is the diffusion coefficient, zk is the charge number on the ion, T is the 
temperature, R is the gas constant, and ϕ is the electrostatic potential.  The 
solution is assumed to be electrically neutral, so that 
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In Equations (6)-(8) all unknown concentrations and potential are considered to 
be averaged over the crack gap at any time.  

In the simplest case, neglecting chemical reactions, and electrochemical 
reactions on the crack sides, and taking into account Equation (5) for the 
hydrodynamic velocity, we can present the equation of mass transfer for the ions 
in the parallel pulsating crevice as follows: 
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The boundary conditions for the concentrations at the crack mouth are evident:  
 

LxCC kk == at           0,       (10) 
 

where 0,kC  is the bulk concentration of Species k, and L is the length of the crack.  
The boundary conditions at crack tip (at x = 0) will be discuss below, and the 
initial conditions can be arbitrary, because only the steady-state solution (at t 
→∞) is of interested to us in this analysis. 

The expression for convective mass transfer, Equations (13), can be 
reduced to the equations for diffusion-migration mass transfer  
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if we introduce the new variables: 
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For the case of harmonic oscillation, Equations (12) yield:  
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Boundary Condition (10), in terms of the new variables, has the form 
 

)(at           0, tLgyCC k ==       (14) 
 
In Boundary Condition (14), the old time, t, must be expressed via the new time, 
τ, by using Equations (13).  Thus, in the case of harmonic oscillation, it is evident 
that, after a very short initial (transient) period, we have 
 

)2/1/(t 2ετ +=      (15) 
 
Equations (11), together with the boundary conditions describes the mass transfer 
between the plane at y = 0 (which corresponds the boundary condition at x = 0) 
and the plane that periodically moves between points Lgmin and Lgmax (where 
concentrations Ck,0 is assumed to exist).  Thus, in the case of the harmonic 
movement of the crack sides, this plane moves according to )]'sin(1[ τωε+= Ly  
(where concentrations Ck,0 is assumed to exist).  Here, in accordance with 
Equation (15), we denote )2/1/(' 2εωω += .  Intuitively, it is clear (and it is 
confirmed by numerical calculations) that, if the frequency of the movement of 
this plane is sufficiently high, the region [Lgmin, Lgmax] ([L(1-ε), L(1+ε)] in the 
harmonic case) can be considered as being kept at concentrations Ck,0.  This 
means that, for the region [Lgmin, Lgmax], Boundary Condition (14) can be replaced 
by the following: C = Ck,0 at y = Lgmin.  
 
3. Examples of application of the transformation of variables 
 Firstly, let us consider the simplest case when dissolution of the metal 
occurs to produce a saturated solution of the metal cation of concentration, C, in 
the presence of an indifferent electrolyte and that the rate of the reaction is under 
diffusion control.  In this case, the boundary condition at the crack tip (at x = y = 
0) is given, 

0y     at      CC S ==       (16) 
 
In accordance with the previous discussion, the steady-state solution at high 
frequencies has the form: 
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or, in terms of the physical variables, x, t, we have for the steady-state conditions  
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Numerical calculations confirm this assumption [i.e., Equation (2)], even for f = 1 
Hz (see Figure 1).  The numerical solution of the diffusion equation was 
performed by using the standard finite difference method for the region [0 ≤ y ≤ 
L(1+ε)] by assuming that C = C0 at y = L(1+ε) and that the diffusion coefficient 



 6

D is a very large number in the region y ≥ L[1+εsin(ωt)].  This condition is 
equivalent to Boundary Condition (14).  

Accordingly, the current density at the crack tip is given by 
 

)(
L

C-)(
min

0
1

0
1

0
1 tg

g
CFDztg

y
CFDz

x
CFDzi S

yx

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=
==

  (19) 

 
Averaging of the current density over the period of oscillation, T = 1/f, yields 
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This relationship implies that, under the assumed conditions, the averaged current 
density in the crack with advection corresponds to the current density in the crack 
without advection (i.e., under constant loading conditions), but with a reduced 
effective crack length Leff = Lgmin.  In other words, the rate of corrosion increases 
by the factor 

min/1/ gii dav =        (21) 
 
[(i.e., by the factor 1/(1-ε) in the harmonic case), where, id, is the diffusion current 
density, calculated in the absence of convection (i.e., for a motionless crevice).  It 
is evident that Relation (21) holds also in the case of the metal corrosion in its 
own salt. 

It is also important to clarify the meaning of “a sufficiently high 
frequency”.  In order to do so, it is convenient to present the boundary problem in 
dimensionless form by introducing the dimensionless depth y* = y/L and 
dimensionless time τ* = τ D/L2  It can be easily shown that the dimensionless 
value iav/id depends only on two dimensionless parameters: ε and dimensionless 
frequency 

D
fLf

)4/1( 2

2
*

ε+
=        (22) 

 
The results of numerical calculations are shown in Figure 2.  We see that, for f* ≥ 
105, the results of the calculations practically coincide with the asymptotic 
solutions (for f* →∞).  Thus, for D = 10-5 cm/s and L = 1 cm, this condition 
corresponds to a dimensioned frequency, f of the order of 1 Hz.  However, some 
reasonable approximation (with the accuracy of order 10-20 %) can be obtained 
even for f* ≥ 103 that corresponds to f being of the order of 0.01 Hz.  

Above, the case of diffusion limitation, when the concentration of the 
active species at the crevice tip is fixed (for example due to the attainment of 
saturation), has been considered.  However, in the majority of cases, the current 
density at the crack tip depends on the potential at the tip (and, in the general case, 
on the concentrations of some species near crack tip that are involved in the 
kinetics of the dissolution reaction).  Here, we consider the simplest case when 
the corrosion current density at the crack tip, i, is described by Tafel’s law and, 
accordingly, can be presented in the form: 
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where im is the corrosion current density that corresponds to the potential at the 
mouth of the crack, Δφ is the potential drop in the crack, and α is the anodic 
transfer coefficient.  It is important to note that, in the general case, in accordance 
with the slip dissolution model, im can be presented in the form of Γ= 0

mm ii , where 
0
mi  is the corrosion current density at the bare surface and Γ is the averaged ratio 

of the bare surface to the total geometrical area of the dissolving crevice tip [10].  
For pitting corrosion, Γ = 1, and for stress corrosion cracking or corrosion fatigue 
Γ can be estimated from [10] 
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where t0 is the time of exposure of the bare surface prior to repassivation, n is the 
current decay constant, and εf is the fracture strain of the passive film at the crack 
apex.  The value of the crack tip strain rate, ctε& , can be found, for example, from 
Congleton’s correlation [11].  Some other expressions for ctε&  can be found in 
Review 12. 

Previously, we proposed a simplified method for calculating corrosion 
cavity propagation rates [13].  This method is based on the postulate that, if the 
rate of an electrode reaction depends (in an explicit form) only on the potential, 
the pit growth rate depends only on the concentration of those species that 
determine the potential distribution near the metal surface within the cavity.  In 
particular, it has been shown that under commonly experienced conditions, in the 
case of the dissolution of Fe in NaCl solution, only Fe2+, Na+ and Cl- are of 
importance, if we wish to calculate the crack propagation rate [and the presence of 
other species, like H+, OH- and Fe(OH)+ can be ignored].  This assumption, of 
course, is valid only if the crevice does not becomes too acidic, in which case H+ 
becomes important as well.  Moreover, it was shown that the potential distribution 
(and, accordingly, crack propagation rate) differs little from that obtained for the 
case when only Fe2+ and Cl- are present in the solution (i.e. in a binary system).  
Of course, it is assumed that the bulk concentration of FeCl2 must be equal to half 
of the bulk concentration of NaCl, because the bulk concentration of Cl- must be 
the same.  

Under these conditions, the concentration of Fe2+, (C1) and Cl- (C2), are 
described by Equations (11) with boundary conditions: 
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Figure 3 shows that, at sufficiently high frequency, and after a sufficiently 

long period of time (corresponding to the establishment of the steady-state), the 
concentration distribution does not depend on time when expressed in terms of the 
variables y and τ.  The concentration depends linearly on the distance coordinates 
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in the region minLgy ≤  and equals the corresponding bulk value for 

maxmin LgyLg ≤≤ .  This finding means that, at sufficiently high frequency, the 
steady state concentration cannot follow the oscillation of the plane y = Lg(t) and 
the periodical component of the mass flux at the metal surface.  Many examples 
confirming this fact can be found, for example in Ref. 9 for the equivalent heat 
transfer problem.  

The potential drop in the cavity at high frequencies, averaged over the 
period of oscillation, Δφ, can be estimated as a sum of two terms: Δφ = Δφ1  + 
Δφ2, where Δφ1 is the averaged potential drop inside the region minLgy ≤  and Δφ2  
is the averaged potential drop in the region maxmin LgyLg ≤≤ .  It can be shown 
that [13] 
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where C0 is the bulk concentration of the salt (FeCl2).  Because the concentration 
inside maxmin LgyLg ≤≤  can be considered as being constant, we can calculate 
Δφ2 by using Ohm’s law for the region between the planes at minLgy =  and 

)(tLgy = .  In accordance with the third Condition (2), the average distance 
between minLgy =  and )(tLgy =  equals )1( mingL −  ( εL  in the harmonic case), 
i.e. 
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where κ0 is the bulk conductivity of the electrolyte  

Accordingly, the averaged potential drop inside the cavity, Δφ, can be 
found via numerical solution of the equation:  
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which can be easily affected by using any standard method.  

By using Equation (23), we can rewrite Equation (31) relative to the value 
of iav/im, in the form 
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which can be easily solved numerically. 

In the absence of advection, gmin = 1, and Equation (29) reduces to  
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i.e. to the corresponding equation for calculating corrosion crack current density, 
id, in the absence of convection [13].  Figure 4 illustrates the influence of 
advection on the averaged current density in the case of corrosion fatigue.  
Calculations were based on the numerical solution of Equation (29) and (31) and 
they differ by no more than 2 % from the results of the direct numerical solution 
of the equation of convective diffusion, which requires a great deal of calculation 
time.   
 
4. Discussion 

It has been tacitly assumed, so far in our analysis, that, for the case of a 
sufficiently deep crack, it is possible to neglect the potential drop in the external 
environment and to calculate the potential distribution, ϕ , by solving the balance 
equations inside the crack only; i.e. we assumed that metal potential at the crack 
mouth coincides with the corrosion potential of the metal on the external surface.  
This assumption can lead to significant conceptual and numerical errors 
(especially at low concentration of bulk electrolyte), because the system has not 
been constrained by the conservation of charge and hence lacks the condition that 
renders the model deterministic. However, it has been experimentally 
demonstrated that, in the case of SCC at least, and almost certainly in the case of 
corrosion fatigue also, a coupling current flows from the slot to the external 
surfaces, where it is annihilated by the reduction of oxygen, indicating that a 
potential gradient must exist in the external environment.  In accordance with the 
general theory for stress corrosion cracking, as embodied by the Coupled 
Environment Models (see, for example [13]-[15]), which take into account the 
influence of the external environment, and for which the predicted crack growth 
rate is constrained by the conservation of charge, the potential drop between the 
crack tip and a point on the external environment that is remote from the crack 
mouth can be taken into account by adding to the potential drop inside the cavity, 
Δφin, the potential drop in the external environment, Δφex.  Generally speaking, 
Δφex, can be expressed in the form 

0κ
ϕ iwQex =Δ       (32) 

 
The dimensionless parameter, Q, can be found analytically in some simplest of 
cases [13, 15], but, in the general case, it must be found by solving Laplace’s 
equation for the external environment by some iterative process [14].   
Recognition and inclusion of the potential drop in the external environment 
imparts determinism to the model, as previously emphasized [13] - [15]). 

Accordingly, in the general case, instead of Equation (28), we must solve 
the following equation  
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For the potential drop, Δφ.  This means that solving the problem of mass transfer 
in the case of corrosion fatigue for a crevice in the form of a parallel-sided slot 
with passive sides at high oscillation frequency is equivalent to solving the mass 
transfer problem for a crevice without advection having an effective depth of 
 

minLgLeff =        (34) 
 
and having an effective parameter, Qeff, of 
 

m
eff w
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It is important to note that if we neglect the potential drop in the external 

environment, the corrosion current density (crack propagation rate) does not 
depend on the average width of the crack.  However, if the potential drop outside 
the crevice is significant, such a dependence exists, as indicated by Equation (36), 
because the last term on the right side depends upon wm. 

We see that advection increases the corrosion current density, when we 
have diffusion limitation in the crack [see Equation (21)], but advection primarily 
reduces the corrosion current density in the case of mixed kinetics [see Figure 4].  
The explanation is that advection decreases the concentration of the electrolyte 
near the crevice mouth (due to the mixing of electrolyte) and in doing so increases 
the resistance (and, hence, the potential drop) in the solution. 

Our calculations show that, in contrast to the pulsating effects in the 
boundary conditions, in the case of normal diffusion, which disappear at high 
frequencies the advection effect increases with increasing applied frequency, f, 
and goes to some limit at f → ∞ (see Figure 3).  It must also be noted that our 
current analysis does not take into account possible viscosity effects [2] that can, 
in turn, reduce the advection effect.  Generally speaking, our calculations (for f → 
∞) yield an estimate for the maximum possible influence of advection on the 
transport processes in the corrosion fatigue crevice.   

It is important to mention that the method of predicting the CF crack 
growth rate described in this paper is also applicable to the case of a pulsating 
parallel slot with active walls, to the case of an arbitrary number of species in the 
solution, and to the case of arbitrary numbers of chemical and electrochemical 
reactions.  Thus, after substitution of Equations (7) into Equation (6) and 
changing variables, we have the following equation for mass balance in a one 
dimensional approximation for a pulsating parallel slot 
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Comparing this equation with the equation of mass transfer in the one 
dimensional approximation for a parallel-sided slot without advection, we see that 
these equations coincide if we increase the rates of the chemical reactions by the 
factor 1/g2 and rates of the electrochemical reactions by the factor 1/g3.  For the 
case of high frequency, it is possible simply average values 1/g2 and 1/g3 over the 
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period of oscillation.  It is possible to use the codes that have already been 
developed [13, 14] for estimating stress corrosion cracking crack growth rate after 
this formal substitution for describing corrosion fatigue, at least for the cases that 
have been considered in this paper (parallel pulsating slot).  Of course, it must be 
recognized that, in accordance with the slip dissolution model, part of the 
geometrical surface area of the crack tip must be blocked by the passive film, and 
hence that the averaged ratio of the bare surface to the total geometrical area of 
the dissolving crevice tip as a function of strain rate has a different form for the 
case of corrosion fatigue than for stress corrosion cracking. 

Finally we note that the change in variable method for solving the 
advection problem is also beneficial even for the case of arbitrary pulsating 
frequencies (and not just high frequencies).  Thus, elimination of the convective 
terms from the equation of mass balance can significantly simplify the numerical 
solution of the mass balance equation when using finite difference methods (see, 
for example Ref. 8). 
 

5. Conclusions 
It has been shown that, in the general case, it is necessary to take into 

account transport processes (and potential drops) inside corrosion cracks when 
subjected to periodic (corrosion fatigue) or constant (stress corrosion cracking) 
loading.  By neglecting such properties, errors of orders of magnitude may be 
induced in the calculated crack propagation rate.  The application of standard 
mathematical techniques for the solution of mass transport equations, in the case 
of advection that is caused by the pulsating movement of crack walls under 
corrosion fatigue loading conditions, can be very time consuming.  This problem 
arises, due to the requirements that the time step that must be employed when 
solving the non-stationary equations must be significantly smaller than the period 
of oscillation.  For overcoming these time consuming limitations, a simple 
algorithm, which is based upon eliminating the convective term from the 
equations of mass transfer in a pulsating parallel-sided slot, by a suitable change 
of variables, was developed.  It is shown that, in many cases, it is possible to use 
codes that were developed for describing stress corrosion cracking, i.e. for the 
case of mass transfer without advection, to describe corrosion fatigue, by simply 
substituting for an effective, frequency-dependent crack length and for the 
average fractional coverage of the crack tip by the passive film. 
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Figure 1. Concentration of ions of corroding metal under diffusion control and 
under steady-state periodic loading conditions as a function of the distance, y, [see 
Equation (16)] for different lengths of the corroding crack.  C0 = 0.01 M, Cs = 1 
M, D1 = 10-5 cm2/s, f = 1Hz, ε = 0.2.  
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Figure 2. Ratio of the averaged limiting corrosion current density to the limiting 
corrosion current density calculated in the absence of advection as a function of 
dimensionless frequency at different values of parameter ε.  The dashed lines 
represent the asymptotic solutions (for f* →∞) [see Equation (21)].   
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Figure 3. Concentration of ions of corroding metal under steady-state periodic 
loading conditions as a function of the distance, y, [see Equation (12)] for 
different lengths of the corroding crack.  C0 = 0.01 M, Cs = 1 M, D1 = 0.72x10-5 
cm2/s, D2 = 2.032x10-5 cm2/s, f = 1Hz, ε = 0.2, α =1, im = 10-3 A/cm2. 
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Figure 4. Ratio of the averaged (over the period of oscillation) corrosion current 
density in the case of corrosion fatigue to the corrosion current density at the 
absence of advection as a function of parameter ε for different values of parameter 
A.  The value A = 24 corresponds to values of parameters that can be found in 
captures to the Figures 1 and 3. 


