Procedure to Estimate the Crack Resistance Curve from the Instrumented Charpy V–Notched Impact Test

R. Chaouadia,† and J.L Puzzolanteb
b SCK\textbullet CEN, Boeretang 200, 2400 Mol, Belgium

Abstract

Recently, a simple procedure based on the relationship between crack length and absorbed energy was provided to determine the crack length from the load–displacement test record. This procedure was validated on a large number of materials using various cracked geometries. The main objective of this paper is to investigate the possibility to apply a similar procedure to a V–notched geometry, namely the Charpy specimen. Such an evaluation would lead to estimate the material crack resistance from a single Charpy V–notched impact test.

By performing a number of well–selected experiments, we demonstrated that such a correlation exists, allowing the determination of both static as well as dynamic (impact) crack resistance from the simple instrumented Charpy impact test with a reasonable accuracy.

Keywords: ductile fracture, crack resistance, Charpy V–notched, quasi–static loading, dynamic loading

1. Introduction

The Charpy impact test is one of the reference tests used to determine the fracture resistance of structural steels. Many engineers and scientists investigated the possibility to correlate Charpy impact energy with the fracture toughness. Indeed, the Charpy impact test is considered as a cheap and easy test in comparison to the fracture toughness test which requires precracking and more sophisticated instrumentation to monitor crack extension. As a result, many empirical correlations were proposed in literature [1–8]. However, most of these correlations are limited in terms of range of application due primarily to their empirical basis. These correlations were mainly established on the basis of experimental data including Charpy impact energy, static fracture toughness and static yield strength, lumping therefore effects related to loading rate, notch acuity and crack length–to–width ratio.

Recently, a simple procedure was provided to determine crack length from the load–displacement test record [9]. The basic underlying idea is that crack length is proportional to the square of absorbed energy. This procedure was validated on a large number of materials using various cracked geometries. It was also demonstrated to be applicable to shallow crack configurations, to large crack extensions [9, 10] as well as impact–loaded tests [11]. The main objective of this paper is to investigate the possibility to apply a similar procedure to a V–notched

\[\text{† corresponding author: Tel: +32-14-333176 ; Fax: +32-14-321216 Email address: rachid.chaouadi@sckcen.be.}\]
geometry, namely the Charpy V–notched specimen, to determine the quasi–static crack resistance. Three effects must be considered:

- Effect of the notch/crack acuity: in the Charpy impact specimen, the V–notch radius is 0.25 mm, which is significantly larger than the infinitely small crack tip radius;
- Effect of the notch/crack depth–to–width ratio: in the Charpy impact specimen, the notch depth–to–width ratio is 0.2 while it is close to 0.5 for fracture mechanics specimens;
- Effect of the loading rate: the Charpy impact test is dynamic while fracture mechanics tests are measured under quasi–static loading.

In order to consider these effects, we performed a number of dedicated tests to derive their individual contributions. In the following, the energy normalization procedure will be briefly recalled and additional information on how it can be applied to the instrumented Charpy impact test will be given.

2. Crack resistance determination procedure from the single Charpy V–notched sample

The crack resistance behavior is obtained using the following procedure. As more details can be found in [9, 11], only the necessary elements are given here. The J–integral calculation is based on the ASTM standard [12], which, for the single edge bend geometry, gives the following equation:

$$J_{(i)} = \frac{K_{(i)}^2(1-\nu^2)}{E} + \left[J_{pl(i-1)} + \frac{\eta}{W-a_{(i-1)}} \frac{U_{pl(i)}-U_{pl(i-1)}}{B_n} \right] \left(1-\frac{a_{(i)}-a_{(i-1)}}{W-a_{(i-1)}}\right)$$ \hspace{1cm} (1)

where U_{pl} is the area under the load–displacement curve (the plastic part, only), W, B_n and a are the specimen width, net thickness and crack length, respectively, K is the stress intensity factor (linear elastic) and (i) is the increment. E is the Young's modulus and ν is the Poisson's ratio.

As can be seen, in equation (1), the J–integral is incrementally evaluated using the actual crack length. It was shown in [9] that the crack extension could be estimated from the absorbed energy (area under the load–displacement test record, U). The crack extension can be calculated using equation (2):

$$\Delta a_{(i)} \approx \Delta a_{final} \left(\frac{U_{(i)}-U_{init}}{U_{final}-U_{init}} \right)^2 = \Delta a_{final} \left(\frac{J_{(i)}-J_{init}}{J_{final}-J_{init}} \right)^2$$ \hspace{1cm} (2)

Calculation of crack growth is performed in two steps. Indeed, to evaluate the J–integral according to equation (1), the crack length is required. First, the crack extension is first approximately estimated using equation (2) left hand where U_{init} is the energy required for crack growth onset. As it will be seen later, this threshold value corresponds to the onset of ductile crack initiation. Below this energy, no crack extension occurs, and therefore, $\Delta a=0$ if $U<U_{init}$. Once J–values are calculated, the actual crack extension is re–calculated using equation (2) right hand.
This procedure assumes that onset of crack initiation occurs at a load between the general yield (linear part) and the maximum load carrying capacity [11], or in terms of characteristic forces:

\[F_{\text{init}} = \frac{F_{gy} + F_{max}}{2} \]

(3)

where \(F_{gy} \) and \(F_{max} \) are the general yield and maximum loads (see Figure 1).

![Figure 1. Typical load – time test record of Charpy impact test indicating some characteristic points.](image)

This relation stems from the correlation between the shear fracture appearance and the characteristic loads of an instrumented Charpy impact test [11, 13, 14]. It was experimentally verified using various techniques [15–17] that crack initiation occurs at a load according to equation (3). Moreover, for cracked specimens, equation (3) was found to lead to a very good agreement with the unloading compliance method [9] while other relations, such as crack initiation at maximum load, clearly deteriorate this agreement [11].

This procedure for crack resistance determination was extensively verified on a number of materials, geometries and experimental conditions [9–11]. Compared to other normalization procedures, such as the one proposed in the ASTM standard [12], this one is more closely based on the actual response of the material and applicable to specimens fully broken.

The same procedure can be applied to the notched rather than cracked geometry, namely the Charpy V–notched sample under impact loading. However, a number of data manipulations are needed to be able to calculate the \(J \)-integral.
To determine the area under the load–displacement curve, as specified by equations (1) and (2), the displacement, $s(t)$, should be calculated using the following equation:

$$s(t) = \int_{t_0}^{t} v(t) \, dt$$ \hspace{1cm} (4)

where $v(t)$ is the actual velocity of the impact hammer given by:

$$v(t) = v_0 - \frac{1}{m} \int_{t_0}^{t} F(t) \, dt$$ \hspace{1cm} (5)

v_0 and m are the initial velocity and the mass of the impact hammer, respectively, $F(t)$ is the load at time t.

The absorbed energy, $U(i)$, can then easily be calculated using equation (6):

$$U(i) = \int_{t_0}^{t(i)} F \, ds$$ \hspace{1cm} (6)

For the J–integral calculation, the same formulation as equation (1) is used except that the factor η is not constant (as in deeply notched samples), but changes with the crack configuration. Indeed, for a shallow crack, this factor was found to depend much on the crack length–to–width ratio and the following formulation, due to Sumpter [18] was adopted here:

$$\left\{ \begin{array}{ll}
\eta = 0.32 + 12 \left(\frac{a}{W} \right) - 49.5 \left(\frac{a}{W} \right)^2 + 99.8 \left(\frac{a}{W} \right)^3 & \text{if } \frac{a}{W} < 0.268 \\
\eta = 1.9 & \text{if } \frac{a}{W} \geq 0.268
\end{array} \right. \hspace{1cm} (7)
$$

The original value of η for deep cracks was 2 and the a/W–transition was 0.282. These two values were updated in equation (7) to comply with the last updates of the ASTM 1820 standard [12]. Note that other formulations of the η–factor can be found in literature [19, 20]. However, the observed differences are relatively small and well below the usual experimental scatter bands.

Combining equation (1) and (7), the J–integral value can be evaluated at each data point. However, in the incremental J–formulation, equation (1), the crack growth correction is not applicable for very large crack extensions. Indeed, above a certain crack extension, corresponding approximately to a crack length–to–width ratio of about 0.75, the J–integral as calculated from equation (1) leads to J–values decreasing with crack length. In a Charpy impact test, the location of such a turning point corresponds to the onset of shear lip formation. Because crack extension is calculated according to equation (2), this leads to abnormal values. Of course, for such high crack extensions, the J–integral concept becomes invalid. However, as will be seen later, a good approximation of the crack resistance curve can still be obtained. It should be emphasized here that the aim of the present paper is to provide a good estimate of the crack resistance from a single Charpy impact test.
3. Experimental

Two reactor pressure vessel steels, 20MnMoNi55 forging and A533B (JPS) plate, that were extensively investigated at SCK•CEN [11, 14] were selected for the present investigation. These materials and the test temperature conditions provide a wide range of crack resistance behaviors. As a result, the materials and test temperatures were selected such that three very distinct crack resistance curves could be obtained [11].

All fracture tests performed here use the Charpy geometry. The standard Charpy specimen, referred to as CVN, is the standard Charpy specimen with a 45° V–notch of 2 mm depth. The samples that were fatigue precracked refer to as PCCv. For the quasi–static tests, the specimens were loaded in three–point bending on an electromechanically driven testing machine with a slow displacement rate (few tenths of mm/min). For the dynamic tests, the Charpy impact test machine was used, the available impact energy being adapted to produce the desired crack length. The J–rate corresponds approximately to ~1 kJ.m⁻².s⁻¹ for the quasi–static tests and to ~10^5 kJ.m⁻².s⁻¹ for the dynamic tests. Further details on the experimental procedure can be found in [11].

To reduce the size of the test matrix, the tests were selected such as to provide separate effects of each variable with the ultimate goal to provide the crack resistance from the CVN impact test. Details can be found elsewhere [21].

4. Results, Analysis and Interpretation

First, it is important to confirm the loading rate effect on the Charpy V–notched geometry. Indeed, in the case of precracked Charpy specimens with a/W ≈ 0.5, it was shown in [11] that there is a proportionality between quasi–static and dynamic crack resistance curves, such as:

\[
J_R^{\text{static}} = \alpha_{\text{loading rate}} \times \left(\frac{\sigma_y^{\text{dynamic}}}{\sigma_y^{\text{static}}}\right)^2 \times J_R^{\text{dynamic}}
\]

where the constant \(\alpha_{\text{loading rate}}\) approximately equals 0.46 and \(\sigma_y^{\text{static}}\) and \(\sigma_y^{\text{dynamic}}\) are the static and dynamic yield strengths.

This equation, denoting the effect of loading rate on the loss of crack tip constraint, was obtained with deeply cracked samples (a/W≈0.5). For shallow cracks, it is known that an apparent crack resistance elevation is observed because of loss of crack tip constraint [22]. By performing Charpy V–notched tests at two loading rates, quasi–static and impact, the same relation is found still applicable for the V–notched geometry [21]. The significant effect is attributed to the crack length–to–width ratio, a/W, which affects the crack tip constraint. We adopted the same strategy as for the loading rate effect by introducing a factor that accounts for the crack configuration effect (deep crack versus shallow notch). Similarly as equation (8), one can write:

\[
J_R^{\text{deep crack}} = \beta_{\text{crack configuration}} \times J_R^{\text{shallow notch}}
\]
where $\beta_{\text{crack configuration}}$ accounts for the loss of constraint introduced by the specimen configuration, more precisely the shallow crack versus deep crack configuration.

Because of crack blunting phenomenon that occurs before fracture initiation, the notch acuity (notch versus crack) has only a negligible effect on the crack resistance behavior and this was experimentally verified in [21].

Combining equations (8) and (9), one obtains the relation allowing determination of the static crack resistance from the Charpy impact test:

$$J_{R \text{ static}} = \alpha_{\text{loading rate}} \times \beta_{\text{crack configuration}} \times \left(\frac{\sigma_{\text{dynamic}}}{\sigma_{\text{static}}} \right)^2 \times J_{\text{CVN impact}}$$

(10)

To obtain the dynamic crack resistance, equation (10) reduces to:

$$J_{R \text{ dynamic}} = \beta_{\text{crack configuration}} \times J_{\text{CVN impact}}$$

(11)

$J_{\text{CVN impact}}$ corresponds to the crack resistance curve based on the standard Charpy specimen. It can be calculated using equations (1), (2) and (7). So, equations (10) and (11) can be used to estimate both the static and dynamic crack resistance curves from the Charpy impact test.

Using the available experimental results, we tentatively tried to determine the factor $\beta_{\text{crack configuration}}$ that rationalizes all results. However, it was not possible to rationalizing all experimental result with a unique factor, but this factor seems to depend on the loading rate as well, namely $\beta_{\text{crack configuration}} = 0.52$ at quasi–static loading rate and $\beta_{\text{crack configuration}} = 0.84$ at impact loading rate. It is important to note that, at quasi–static loading rate, the value obtained here is in close agreement with the ratio of the J_R–curve obtained with $a/W=0.6$ and $a/W=0.1$, namely ~0.6 [22]. The test results obtained with the Charpy V–notched specimen geometry shown in Figure 2 lead to a good agreement considering equation (10).

If we consider the following tests:
1. CVN ($a/W=0.2$) multiple specimen tests under static loading;
2. CVN ($a/W=0.2$) single fully broken test under impact loading;
3. PCCv ($a/W\approx 0.5$) multiple specimen tests under impact loading;
4. PCCv ($a/W=0.5$) single specimen test under static loading;

Figure 3 shows that all these data can be rationalized using equation (10). The agreement between the various tests is reasonably good. This Figure clearly supports the capability of determining both the static and dynamic crack resistance curves from a single instrumented Charpy V–notched impact test.
Figure 2. Crack resistance curves as derived from the static Charpy V-notch geometry, accounting for the crack configuration effect through $\beta_{\text{crack configuration}}=0.52$.

There are limitations of the procedure presented here, in particular the application of equation (10). These restrictions are mainly related to the constants accounting for notch/crack configuration and loading rate effects. These constants were empirically established based on experimental results. Therefore, application to other material and experimental conditions will probably need re-evaluation of these constants. Because these constants were introduced to account for the loss of constraint, it will be very interesting and desirable to relate them directly to the actual loss of constraint calculations using finite element computations. A number of such calculations were already published to evaluate the loss of constraint induced by crack configuration and loading rate, for example [23, 24]. Analytical expressions can then be established based on the finite element results of the form:

$$\omega_{\text{loss of constraint}} = \alpha_{\text{loading rate}} \times \beta_{\text{crack configuration}} = f\left(\frac{\sigma_y}{E}, \frac{d\varepsilon}{dt}, n, a/W, \frac{dJ}{dt}\right)$$

where all important parameters related to material, crack configuration and loading rate are taken into account. Equation (12) can then be fitted to the finite element results.

Note that in this work, all specimens were plain sided (not side grooved). In presence of side grooves, the change of loss of constraint factor should also be taken into account.
5. Conclusions

This study has demonstrated the possibility to reasonably estimate the crack resistance behavior from the instrumented Charpy impact test. The procedure is solely based on the instrumented Charpy impact test record. Both dynamic and static crack resistance can be derived with a reasonably good accuracy. Test temperature and loading rate effects are taken into account through the constants introduced to account for the loss of constraint and the loading rate effect on the yield strength. These constants were experimentally determined for the material, specimen configuration and loading rate conditions investigated here. But, to increase the range of application, a better account of these effects would be possible by performing appropriate finite element calculations to analytically express the constants as a function of crack depth–to–width ratio and loss of triaxiality.

Acknowledgments

The authors gratefully acknowledge the technical support of R. Mertens, A. Pellettiere and L. Van Houdt. The steels, 20MnMoNi55 and A533B (JPS) were kindly provided by J. Heerens (GKSS) and K. Onizawa (JAEA), respectively. Many thanks to J. Wagemans for reviewing of the paper.

References

