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For description of pre-fracture zone, the modified Leonov-Panasyuk-Dugdale 
model is proposed. The simple relations have been derived for the following 
critical parameters: shear stresses, pre-fracture zone length, and III mode SIF. 
Passage to the limit from the sufficient fracture criterion to the necessary one 
takes place when the pre-fracture zone length vanishes. The critical stresses 
obtained under the necessary and sufficient criteria differ substantially. The 
critical SIF obtained under the sufficient criterion are calculated within the 
framework of the model by the grain diameter, and conventional parameters of 
the diagram of shear stresses versus shear strain. 

 
1. Introduction. Complex setting up the problem of the distribution of stresses 
and displacements for the antiplane shear crack in a pre-fracture zone for elastic-
plastic materials relate to nonlinear fracture mechanics. This complex nonlinear 
problem will be significantly simplified in the paper. To accomplish this, we 
make use of classical representations of linear fracture mechanics when antiplane 
shear cracks are modeled by bilateral cuts. In order to derive closed relations, we 
apply the modification of Leonov-Panasyuk-Dugdale model [1, 2]. 
Consideration of pre-fracture zones at the tips of an antiplane shear crack turns to 
be very successful [3] for description of these zone lengths and crack opening (see 
also pp.244-245 in [4]). 
 
Let shear stresses τ∞  be given at infinity. An inner rectilinear crack of length 02l  
is most often modeled by some imaginary crack-cut of length Δ+= 222 0ll  (Δ  is 
the pre-fracture zone lengths each of which is situated on the inner crack 
continuation). The simplest description of the pre-fracture zone can be probably 
obtained using modification of the Leonov-Panasyuk-Dugdale model [5, 6]. The 
modification of this model, as a matter of fact, differs from the classical model in 
that the pre-fracture zone is characterized by a width. Using one more parameter 
allows fracture of a fiber in the pre-fracture zone nearest to the middle of a real 
crack to be estimated applying data about parameters of the standard σ ε−  
diagram of material [6]. As structured materials are under consideration, we make 
use of the Neuber-Novozhilov approach [7, 8].  
 
Let the origin of Cartesian coordinate system Oxy  and that of polar coordinate 
system Orθ  be coincident with the right-hand tip of an imaginary crack, and the 
Ox -axis is directed along the crack. The stress field for antiplane shear cracks can 
be viewed as a sum of two summands [9] 
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III III IIIK K K∞ Δ= + ,  0, 0III IIIK K∞ Δ> < ,  IIIK lτ π∞ ∞=            (1) 
 

where ( , )III IIIK K l= Δ  is the total stress intensity factor (SIF); IIIK ∞  is the SIF 
generated by stresses τ∞ ; IIIK Δ  is the SIF generated by constant stresses 

m constτ Δ =  acting in compliance with the classical Leonov-Panasyuk-Dugdale 
model; the first summand in relation (1) is singular solution part; assume that such 
τ∞  is chosen for which 0IIIK lτ π∞ ∞= > , then 0IIIK Δ < . 
 
When pre-fracture zones are described, two classes of solutions are possible: 

0IIIK > ,                                                          (2) 
0IIIK = .                                                          (3) 

The third class of solutions that corresponds to the inequality 0IIIK <  for the total 
SIF is not considered. Thus, when equality (3) is implemented, the solution has no 
singular part; and when inequality (2) is implemented, the solution has two 
components. Deriving the second class of solutions (3) can be related to 
Khristianovich’s hypothesis [10] for the absence of singularity at the imaginary 
crack tip [3, 4]. When studying the pre-fracture zone, the main attention was paid 
to solutions appropriate to the class (1), (3). 
 
The Neuber-Novozhilov approach [6, 7] allows one to extend the class of 
solutions for structured media. According to Novozhilov’s nomenclature, the 
criteria under study are called sufficient. Infinite stresses at the imaginary crack 
tip, as this is obvious from relations (1) and (2) are not admissible by the 
continuum criterion but do not contradict to discrete-integral criteria for structured 
material if the singular component of solution has integrable singularity. 
Substantiation of the Neuber-Novozhilov approach when formulating criteria is 
given in [11]. 

 
2. Sufficient fracture criterion for antiplane shear. Now we consider solids 
with regular structure. In what follows, the class of solutions (2) is considered. 
The sufficient discrete-integral strength criterion for the mode III has the form 
( 0, 0ωΔ > > ) 

0

0 0

1 ( ,0)
nr

yz mx dx
kr

τ τ≤∫ ;                                                (4) 

2 ( ,0)w x ω∗≤ , 0≤≤Δ− x .                                            (5) 
here ( ,0)yz xτ  are shear stresses (1), which have the singular component (2) with 
integrable singularity; 0r  is the specific linear size of a regular microstructure of 
the original material (for example, 0r  is the grain diameter); kn,  are integers 
( kn ≥ ); 0nr  is the averaging interval (1 4n≤ ≤ ); nkn /)( −  is the damage of 
original material within the averaging interval (1/ 2 ( ) / 1n k n≤ − ≤ ); mτ  is the 



 3

shear “theoretical” strength (yield strength) of granular material; 2 2 ( ,0)w w x=  is 
mutual displacement of imaginary crack flanks; 2 ( ,0)w ω∗ ∗−Δ =  is the critical 
displacement under which a structure in the pre-fracture zone nearest to the 
middle of a crack falls. It is naturally to measure the pre-fracture zone length Δ  in 
units of the material structure length 0r . Further we assume that this specific 
linear size is not changed under inelastic material deformation. Undoubtedly, 
when necessary (4) or sufficient (4) – (5) criteria are used, the natural restriction 
should be imposed: the initial crack length should be more than the specific linear 
size, i.e., 0 02l r≥  (as a rule, 0 0l r ). Novozhilov’s sufficient strength criterion (4) 
– (5) permits the passage to the limit when the pre-fracture zone length vanishes, 
i.e., 0→Δ . In such a way, we obtain the Novozhilov’s necessary discrete-
integral criterion [8]. Let stresses 0τ∞  denote critical stresses obtained by the 
necessary criterion (4) and are appropriate to brittle material fracture. For 0→Δ , 
there is no displacement of imaginary crack flanks: lengths of the imaginary and 
initial cracks are coincident, i.e., for 0=Δ , we have 2 (0) 0w = . 
 
Consider the sufficient criterion. For critical fracture parameters , 2 , IIIw Kτ ∗ ∗ ∗

∞ , and 
∗Δ , relations (4) and (5) transform into equalities (critical parameters are labeled 

with asterisk), critical stresses τ ∗
∞  correspond to material structure for the class of 

solutions (2). For the class of solutions (3), we introduce symbols , 2 , IIIw Kτ ∗∗ ∗∗ ∗∗
∞ , 

and ∗∗Δ  for corresponding critical fracture parameters. It is obvious that  
0 0, 2 2 0, , 0III III IIIw w K K Kτ τ τ∗∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗∗ ∗

∞ ∞ ∞> > > > > > Δ > Δ > .           (6) 
For critical lengths of imaginary cracks, the relations 0l l∗ ∗= + Δ  or 0l l∗∗ ∗∗= + Δ  
are valid for corresponding classes of solutions. 
 
Further we consider steadily increasing loading. When in the necessary (4) and 
sufficient (4) – (5) strength criteria strict inequalities are satisfied, advance of tips 
of both real and imaginary cracks does not occur. When stresses τ∞ applied at 
infinity attain the magnitude 0τ∞ , i.e., 0τ τ∞ ∞= , the necessary criterion (4) of the 
Neuber-Novozhilov type [7, 8] is violated and formation of a pre-fracture zone 
begins. Under steadily increasing loading, when 0τ τ τ ∗

∞ ∞ ∞< < , steady growth of an 
imaginary crack takes place since its length increases by increase of pre-fracture 
zone lengths Δ+= 222 0ll . For τ τ ∗

∞ ∞= , the structure nearest to the middle of a 
real crack falls if equality (5) for the first class of solutions (2) is violated.  
 
Thus, relation (4) in the sufficient fracture criterion (4) – (5) governs the 
imaginary crack advance, and relation (5) governs the fracture of the first 
microstructure nearest to the middle of a real crack. Relation (5) corresponds to 
COD or CTOD from [12, 13]. 
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Given in Fig. 1 are loading schemes (at the top) and stress fields ahead of real and 
imaginary cracks for the necessary fracture criterion (a) and the sufficient fracture 
criterion when the first (b) or the second (c) classes of solutions are implemented. 
 

 
Fig. 1 

 
3. Description of material properties in pre-fracture zone. The classical τ γ−  
diagram of material has, except the linear section of deformation Gτ γ=  for 

00 γ γ≤ ≤ , the nonlinear section for 0γ γ γ ∗≤ ≤ , where G  is the shear modulus, 

0γ  is the angle at which 0m Gτ γ= , 1γ γ∗ =  is the critical angle of deformation for 
material under study when the first class of solutions is implemented (2). Fig. 2 
shows the initial τ γ−  diagram of material (curve 1) and its simplest 
approximation (line 2) used for construction of critical fracture parameters. 
Location of the horizontal straight line 2 is defined from the condition of 
averaging on the nonlinear deformation section on τ γ−  diagrams up to the point 

1γ γ∗ =  for the first class of solutions. In Fig. 2, the following notation is used: mτ  
is the yield stress and mτ Δ  are stresses acting according to the Leonov-Panasyuk-
Dugdale model. In the general case, these stresses mτ  and mτ Δ  can be distinct, i.e., 

m mτ τΔ ≠ , the τ γ− diagram in Fig. 2 is appropriate to materials with significant 
strengthening after yield occurrence when m mτ τΔ > . Approximation of τ γ−  
diagram will be used further in discussion of the theory of critical distances [14, 
15] when m mτ τΔ ≠ . 
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We are coming now to estimation of a pre-fracture zone width. Equate the pre-
fracture zone with the plasticity one. Assume that within the pre-fracture zone, the 
condition of yield is met [3, 4] 

2 2 2
xz yz mτ τ τ+ = . 

Making use of this condition, we obtain crude estimate of the plasticity zone 
radius pr  at the tip of a real crack [4, p. 242] if only singular components from (1) 
are kept 

2 2
0/(2 ),p III m IIIr K K lπτ τ π∞ ∞ ∞= = .                             (7) 

The pre-fracture zone width at the tip of a real crack is a width of the plasticity 
zone at the tip of a real crack. Taking into account (7), we have  

( )2
02 /p mr l τ τ∞= . 

Since, as a rule, / 1mτ τ∞ , then 02 pr l . If values of 2 pr  for the pre-fracture 

zone width and the critical strain 1γ γ∗ =  for material under study are taken into 
account, critical displacements ω∗  of imaginary crack flanks are estimated as 
follows 

( )2
0 0( ) / mlω γ γ τ τ∗ ∗

∞= − .                                        (8) 
 Mutual displacement of imaginary crack flanks 2 2 ( ,0)w w x=  in the pre-fracture 
zone for the class of solutions (2) can be given in the form [9] 

( )2 ( ,0) / /(2 )IIIw x K G x π= − ,  0≤≤Δ− x .                         (9) 
Minor terms in relation (9) are omitted because further such fracture is considered 
when the pre-fracture zone length is essentially less than the crack length, i.e., 

/ 1lΔ  and 0l l≈ . 
 

 
Fig. 2                                          Fig. 3 

 
Suggested modification of the Leonov-Panasyuk-Dugdale model, two-sheet 
solution is considered. The scheme elucidating the two-sheet solution is given in 
Fig. 3, the form of the plasticity zone corresponding to relation (7) is also given in 
the Figure. On the whole plane with a two-side cut, solution appropriate to linear 
fracture mechanics is defined; one or another solution corresponding to nonlinear 
fracture mechanics is defined only for the pre-fracture zone occupying the 
rectangle with the side , 2 prΔ . Vertexes of this rectangle are 



 6

( , ), ( , ), (0, ), (0, )p p p pA r A r B r B r+ − + −−Δ −Δ − − . 

Conditions of gluing solutions by stresses ( ,0), ( ,0)yz yzx xτ τ+ −  for 0x−Δ ≤ ≤  and 
displacements ( ,0)w x  for 0x−Δ ≤ ≤  are essentially peculiar (signs plus and 
minus point upper and lower sides of cut upper and lower sides of rectangle): 

,0 , ,0 , ,0 , ,0 ,
, , ,yz yz yz yzA B A B A B A B

w w w wτ τ τ τ+ + + + − − − − + + + + − − − −

+ + − − + + − +

−Δ −Δ −Δ −Δ
= = = = . 

Thus, the two-sheet solution takes place in the rectangle A B B A+ + − −  from which a 
two-side cut along the segment 0x−Δ ≤ ≤  is excluded. 
 
4. Critical fracture parameters (the first class of solutions). Inequalities of the 
fracture criterion (4) – (5) written for the critical parameters , 2 , ,IIIw Kτ ∗ ∗ ∗ ∗

∞ Δ are 
transformed into equalities. Specify the value of the component ( , )yz x yτ  in 
relations (1) for the inner crack and its continuation at 0y =  

( ,0) / 2yz IIIx K xτ π τ∞≅ + .                                             (10) 
This solution (10) allows one to take into account both singularity and the 
constant component for x →∞ . 
 
For the class of solutions (2), we consider SIF IIIK Δ  generated by constant 
stresses m constτ Δ =  acting according to the modified Leonov-Panasyuk-Dugdale 
model at the end parts of an imaginary crack (see Fig. 2a). This SIF IIIK Δ can be 
adopted from the reference book [16, p. 380-381] in the form 

( ) ( )01 2 / arcsin /III mK l l lτ π πΔ Δ= −⎡ ⎤⎣ ⎦ .                                  (11) 
After substitution of relations (8) – (11) into the sufficient fracture criterion (4) – 
(5) and some transformations, we obtain the system that involves one equality and 
one inequality 

( ) ( )

2

0 0
0

0

2 , ( ) ,
2

1 2 / arcsin /

III III
m

m

III m

K Kn n l
r k Gk

K l l l l

ττ τ γ γ
π τπ

τ π τ π π

∗ ∞
∞

∞ Δ

⎛ ⎞Δ
+ = ≤ − ⎜ ⎟

⎝ ⎠

= − −⎡ ⎤⎣ ⎦

.                   (12) 

When in relation (12), the equality is used, and in the second relation from (12), 
the inequality is implemented, we obtain the subcritical state of a system. When in 
both these relations from (12), equalities are implemented, then the system 
converts to the critical state. Whether critical and subcritical states will be stable 
yet to be elucidated. 
 
For 0Δ→ , we obtain critical stresses 0τ∞  according to the necessary fracture 
criterion  

( ) 1
0 1

0 02 / /m k nl r n kτ τ
−

−
∞ = + .                                       (13) 
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The suggested sufficient fracture criterion (12) for the class of solutions (2) has a 
physical meaning if the total SIF 0IIIK >  for 0IIIK ∞ > , i.e. 

( ) ( )01 1 2 / arcsin / / 0ml lπ τ τΔ ∞− − >⎡ ⎤⎣ ⎦ .                                     (14) 
Restriction (14) corresponds to the situation when there is no crack flank overlap 
for the mode I fracture. 
 
Now we simplify system (12). If / 1lΔ , with accuracy of the highest 
infinitesimal order, we have 

( )arcsin 1 / / 2 2 /l lπ−Δ ≅ − Δ  at / 1lΔ . 

Keeping summands with multipliers / lΔ  in system (12), we derive explicit 
expressions for the critical stresses τ ∗

∞  and the critical pre-fracture zone length ∗Δ  
according to the sufficient fracture criterion  

1

0 0 0

1 2 1 2 1 , 2 1m

m m m

nl n
k r k l

ττ τγ γ
τ γ τ γ τ

−
∗ ∗∗ ∗ ∗ ∗

Δ∞ ∞
∗

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞Δ⎪ ⎪= − − + = −⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

.        (15) 

The passage to the limit 0/ /m mτ τ τ τ∗
∞ ∞→  in system (15) for 0 0γ γ∗ − →  is 

obvious as compared to (13). System (15) has meaning if  
( )01 2 / 1 / 0m mγ γ τ τ∗

Δ− − > .                                                  (16) 
Restrictions (14) and (16) are conditions for existence of the class of solutions (2). 
Thus, for the first class of solutions, restriction (16) in the explicit form is derived 
using parameters characterizing both deformability and strength of a material 
based on approximation of the standard τ γ−  material diagram. For / 1m mτ τΔ = , 
we have 0 01.5γ γ γ∗< <  that corresponds to materials of the ceramic-types and 
high-strength alloys. 
 
Under steadily increasing loading in the interval of loads 0τ τ τ ∗

∞ ∞ ∞< < , steady 
growth of the imaginary crack length takes place since 0 1 0 2( ) ( )l lτ τ∞ ∞+ Δ < + Δ  in 
the system analogous to system (15), when 1 20 ∗≤ Δ ≤ Δ < Δ . Instability of the 
critical state of the crack of length l∗  for τ τ ∗

∞ ∞=  is obvious from the first relation 
from (15): as the critical crack length increases up to the length l δ∗ +  for 0δ → , 
when 0δ > , we have ( ) ( )l lτ τ δ∗ ∗ ∗ ∗

∞ ∞< + . Thus, critical loads according to the 
necessary fracture criterion 0τ∞  and the sufficient one τ ∗

∞  are lower and upper 
bounds of critical loads of the nonlinear system under consideration. Fig. 4 shows 
the ratio between critical loads according to sufficient and necessary fracture 
criteria 0/τ τ∗

∞ ∞  for / 1m mτ τΔ = , 1n k= = , 0/ 1l r  depending on the parameter 

0/γ γ∗  characterizing deformability.  
 
Sections with steady crack growth for 0τ τ τ ∗

∞ ∞ ∞< <  and 0( )l∗ ∗Δ = Δ  are of most 
interest since a peculiar trapping for propagating cracks occurs [17, 18, and 19]. 



 8

Consider in more detail the steady behavior of the system for the following set of 
crack lengths 0 1 0 0 2 1 1 1, ( ), ( ),..., ( ),...i i il l l l l l l l l l∗ ∗ ∗

+= + Δ = + Δ = + Δ  for 1, 2,...i = In 
Fig. 5, the “dinosaur’s back” by Thomson [17] is shown. Here 1 and 2 are curves 
of critical loads 0τ∞  and τ ∗

∞  obtained according to the necessary and sufficient 
fracture criteria for / 1m mτ τΔ = , 1n k= = , 0/ 1l r , 0/ 4 / 3γ γ∗ =  . The forms of 
combs on “dinosaur’s back” are defined by approximation of the τ γ−  diagram 
of material under study; ascending parts of the comb are depicted with solid 
curves and descending ones are depicted with dashed lines. Lengths of pre-
fracture zone for long cracks depend only on material deformability in this zone 

( )
0

0 0

/ 1
1 2 / 1r

γ γ
γ γ

∗∗

∗

−Δ
− −

. 

 

 
Fig. 4                                                  Fig. 5 

 
Consider the critical SIF IIIK ∗  for class of solutions (2) 

1

0 0

1 2 1 2 1 m
III m

m

nl nK l l
k r k

τγτ π τ π
γ τ

−
∗ ∗

∗ ∗ ∗ ∗ Δ
∞

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − − +⎨ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

.           (17) 

The second part of approximated relation (17) corresponds to the restriction 
/ 1l∗ ∗Δ . The critical SIF IIIK ∗  (17) is derived in the explicit form using 

structural, strength and deformation material parameters (undoubtedly, restriction  
(16) is valid). In the framework of the modified Leonov-Panasyuk-Dugdale 
model, the critical SIF IIIK ∗  is calculated trough characteristics of the τ γ−  
material diagram and it is not a material constant. Emphasize that for long cracks 

0/ 1l r∗  for 1n k= = , the approximate relationship for the critical SIF IIIK ∗  
takes the very simple form  

( ) 1

0 0/ 2 1 2 / 1 /III m m mK rτ π γ γ τ τ
−

∗ ∗
Δ

⎡ ⎤− −⎣ ⎦ .                        (18) 

This notion (18) of critical SIF IIIK ∗  is independent of the initial crack length 0l  
for 0 0/ 1l r . For 0γ γ∗ → , the critical SIF IIIK ∗  transforms to the critical SIF 0

IIIK  

according to the necessary fracture criterion 0
0 / 2III mK rτ π . 
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5. Fracture assessment diagram. Consider limiting values of critical loads 
according to the necessary 0τ∞  and sufficient τ ∗

∞  fracture criteria for short and long 
cracks. The simplest case is considered, when / 1m mτ τΔ = , 1n k= = , then we 
have  

( ) ( ) ( )

0

10
0 0 0 0 0

, 0;

/ / 2 , / / 2 1 2 / 1 / 1

m m

m m

for l

r l r l for l r

τ τ τ τ

τ τ τ τ γ γ

∗
∞ ∞

−
∗ ∗ ∗

∞ ∞

= = →

⎡ ⎤= = − −⎣ ⎦
.  (17) 

The fracture assessment diagram for structured material is shown on a log-log- 
plot in Fig. 6, where curves 1 and 2 represent the dependences 0 0 ( )lτ τ∞ ∞=  and 

( )lτ τ∗ ∗ ∗
∞ ∞=  for 0/ 4 / 3γ γ∗ = , respectively. The very simple form of the fracture 

assessment diagram is associated with notations (17): long cracks comply with 
linear elastic fracture mechanics (LEFM), but for short cracks, the fracture 
assessment curves deviate from the LEFM line towards mτ  [14]. For long cracks, 
when the strong inequality 0/ 1l r  is implemented, the interval L  of critical 
distances [14, 15] calculated by the rule is as follows 

( ) ( ) ( ) ( ) 22 20
0 0 0/ / / / ; / 2 / 2 1 2 / 1 /III m III m m mK L K r L rτ π τ π γ γ τ τ

−
∗ ∗

Δ
⎡ ⎤≤ ≤ ≤ ≤ − −⎣ ⎦ . 

It is obvious that the upper bound of L , i.e., critical distances, can differ from the 
lowest bound by several times, sometimes by one order. 

 
Fig. 6 

 
6. Discussion. The Neuber-Novozhilov approach [7, 8] allows one to obtain the 
upper and lower bounds for critical loads [20]. These critical loads 0 0 ( )lτ τ∞ ∞=  and 

( )lτ τ∗ ∗ ∗
∞ ∞=  correspond to necessary and sufficient conditions of dividing 

specimens into parts. In the author’s opinion these critical distances [14] depend 
both on the material’s microstructure [15] and characteristics of the τ γ−  material 
diagram ( m mτ τΔ ≠ ).  
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