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Abstract 
Inspired by recent multiscale modeling of void/microvoid interaction in ductile 
fracture, a new analysis of literature data on ultrahigh strength martensitic steels 
shows that JIC toughness normalized by primary inclusion mean spacing is 
parabolically related to the measured critical primary void size ratio. Interpreting 
this critical ratio as a measure of the critical intervoid ligament strain for 
primary void coalescence by finer scale microvoid instability, calculation of the 
critical strain from Rice-Tracey void growth shows that JIC toughness is 
exponentially related to the critical microvoid instability strain. This represents a 
far stronger sensitivity to critical strain than the previously assumed linear 
scaling. An approximate correlation of this critical strain to macroscopic fracture 
ductility allows an estimate of fracture toughness. 

1. Introduction 
Prediction of ductile fracture toughness, numerically or analytically, from 
microstructural and constitutive parameters has been a long-standing goal of the 
materials science and solid mechanics communities. Metallographic studies and 
recent multiscale simulations [1-6] show that 3D ductile fracture starts with 
plastic deformation followed by nucleation and growth of primary voids, and 
completes through primary void coalescence by a mechanism of intervoid 
ligament mechanical instability driven by interactive microvoiding on submicron-
scale particles. New mechanistic insights provide an opportunity for 
reinterpretation of available literature data. 
 
The mode I J-integral ductile fracture toughness is proportional to the critical 
crack tip opening displacement, δIC, and the flow stress σ0 (usually taken to be the 
average of the yield strength and UTS) [7]: 
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where dn~0.6 depending on material deformation properties. Rice and Johnson [8] 
were the first to relate the crack tip opening displacement, δt, to inclusion 
microstructure. Based on a rigorous mechanics analysis at the crack tip, they 
derived that the true strain ahead of a crack tip is a function of a parameter X/δt, 
where X is the distance of a material point from the tip before deformation. 
Adopting a simple idea that some critical matrix fracture strain must be achieved 
at a material point initially at a distance X0 from the crack tip, they concluded 
from numerical calculations that  
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δIC ~1.0 to 2.7 X0 

and identified X0 as the mean nearest neighbor spacing of primary inclusions 
responsible for ductile fracture.  
 
Since X0 and σ0 are experimentally measurable, it is tempting that the ductile 
fracture toughness might be predicted from tensile test and inclusion analysis. A 
widely cited model in the literature is the Hahn-Rosenfield model [9], derived 
directly from the R-J model by using the correlations between JIC and δIC, JIC and 
KIC, and taking X0=(4π/3f)1/3r, where X0 is defined as 3D spacing and f and r are 
the volume fraction and the mean radius of the primary inclusions, respectively.  
 
A complete ductile fracture toughness model must include parameters related to 
both primary and secondary voids. Building on the Hahn-Rosenfield framework, 
Ritchie et. al. proposed that at the onset of ductile fracture the local equivalent 
plastic strain ahead of the crack tip must exceed a critical strain, εc, over a 
characteristic distance, l0, [10]. Based on this suggestion, JIC for ductile fracture is  

JIC = εcl0σ0 

i.e., the ductile fracture toughness linearly relates to a critical strain εc. Further, 
Garrison proposed that the term εcl0 is equivalent to the critical size of primary 
voids and the mean spacing of primary inclusions (X0) such that [11-17]:  
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which implies 
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where R/R0 is the ratio between the final dimple size and the mean size of the 
primary inclusions. The ductile fracture toughness can thus be related to the 
mechanical behavior of the material, the primary inclusion distribution and the 
measured growth of primary voids.  
 
To check this relation, significant efforts were devoted to measure final dimple 
sizes at fracture surfaces of various types of steels. Based on data available in the 
literature [11-13, 18-25], the present work shows that the ductile fracture 
toughness normalized by the flow stress and the spacing of the primary inclusions 
is a power function of the void growth ratio R/R0, instead of the previously 
proposed linear relation. Applying the void growth law of Rice and Tracey [26], 
we conclude that the ductile fracture toughness is related exponentially, instead of 
linearly, to the critical strain εc, i.e., exhibits a much stronger sensitivity to the 
critical strain. A stronger correlation of ductile fracture toughness is thus feasible 
by quantifying the critical level of primary void growth. Inspired by recent 
simulations of ductile fracture as a multiscale process [1-6], we also explore 
correlation of the critical primary void growth ratio with the critical strain for 
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finer scale microvoid localization, as estimated from measures of macroscopic 
fracture ductility. 

2. Toughness and the void size 
Garrison’s proposed correlation between the critical crack tip opening and the 
parameter X0(R/R0) is represented in Fig. 1. Examination of the figure suggests 

that a rough correlation may be 
found for each type of steel, but no 
collective correlation exists.  

 

Figure 1 the critical crack tip opening 
displacement vs. X0(R/R0). Red circle: 
AF1410, black triangle: AerMet100, blue 
diamond: UHS martensitic steels, green 
full diamond: HP9-4-10 and HP9-4-20 
steels, open purple triangle: HY180. The 
symbols are the same in all figures 

 
With multiscale dilatational plasticity constitutive models, relations between 
toughness and microstructural details have now been numerically calculated for 
ductile materials [1-6]. The main results of these studies suggest a dependence of 
the toughness on the initial microstructural parameters in a general form 
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where E is Young’s modulus, n is the apparent strain hardening exponent, W0 and 
λ0 are the shape and spacing parameters of the voids. Ignoring the shape effect, 
the data collected here show a simple power law correlation with critical void 
growth ratio represented in Fig. 2. The fracture toughness normalized by the flow 
stress and the spacing of primary inclusions is related in a power law to the ratio 
of the radius of the critical voids to the initial radius, R/R0, such that  
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Figure 2 The normalized ductile fracture 
toughness J1C/σσσσ0X0 vs. the growth ratio of 
primary voids R/R0, showing the power law 
correlation 

 
where C0 is the value of JIC/σ0X0 at R/R0 

=1. The initial radius of the voids, R0, is 
assumed as the radius of primary 

inclusions. Fitting the data in Fig. 2 finds that C0=0.23, p=2. The parabolic 
dependence of ductile fracture toughness on the primary void growth ratio is thus 
stronger than the previously proposed linear scaling. 
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3. Void growth and the phenomenological toughness model  
The proposed power law correlation suggests a dominant role of the critical value 
of the primary void growth ratio in ductile fracture. Rice and Tracey [26] were the 
first who proposed the constitutive growth law of void growth in an infinite solid 
under a remote tensile mean stress σm   
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where �& is the true strain rate and C = 0.283. The Rice-Tracey model predicts that 
the strain rate normalized void growth rate is an exponential function of the stress 
triaxiality, σm/σy, at a distance from the crack tip where voids initiate. Integrating 
under constant strain rate, the Rice-Tracey model relates the void growth ratio to 
the strain ε in the matrix: 
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Since the normalized ductile fracture toughness, JIC/σ0X0, is a power function of 
R/R0, the Rice-Tracey model suggests that ductile fracture toughness is an 
exponential function of the critical strain. The final value of R/R0 is reached when 
the matrix strain ε reaches εc the critical strain for primary void coalescence, 
where the matrix is softened by secondary microvoids. This critical strain is then  
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Based on the Ritchie et.al. proposal, ductile toughness would then be linearly 
related to the critical strain and hence 
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A semi-logarithmic plot of the normalized JIC vs. (R/R0) is shown in Fig. 3. In 
contrast to the power law behavior demonstrated in Fig. 2, the proposed linear in 
the semi-logarithmic plot correlation does not appear. 

 

Figure 3 The normalized ductile fracture 
toughness J1C/σσσσ0X0 vs. the growth ratio of 
primary voids, R/R0, in a semi-logarithmic plot  

 
3D numerical simulations demonstrate that 
the stress triaxiality at the intervoid 
ligament varies during void growth [6]. A 
value of σm/σ0~2.1 in the intervoid 
ligaments is typical at the onset of void 
coalescence. With the (R/R0) data available, 
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the critical strain can then be calculated. The normalized ductile fracture 
toughness J1C/σ0X0 vs. the critical strain so obtained is shown in Fig. 4a. As 
expected, an exponential correlation is observed, such that 
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where C0= 0.23 is the value of the normalized toughness at εc = 0 and  
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This leads directly to α =13.208, while data fitting to the computed εc of Fig. 4a 
gives α =13.03. The data exhibit a much stronger sensitivity of normalized 
toughness to critical strain than the previously proposed linear scaling. As shown 
by the log-log plot of Fig. 4b, a power law representation would correspond to a 
power of 3.5 compared to the value of 1 proposed by the old model. 

 
Figure 4 The normalized ductile fracture toughness J1C/σσσσ0X0 vs. the matrix critical strain εεεεc 
obtained based on Rice-Tracey growth model, a) semi-logarithmic plot showing the 
exponential correlation and b) double-logarithmic plot showing the far stronger dependence 
than linear 

4. The matrix critical strain for ligament instability 
The critical strain characterizes the onset of primary void coalescence, which 
consists of deformation localization at the microscale inside the intervoid 
ligament between neighboring primary voids.  As discussed in detail in [1,2], 
depending on the position and orientation of the ligament relative to the principal 
straining axis, both normal separations and shear localizations are possible. 
Recent modeling has addressed the role of submicron particles in microvoid-
driven localization of plastic deformation during ductile fracture [3-5]. The 
critical strain is greater if formation of secondary microvoids is delayed as the 
result of reducing secondary particle size and volume fraction.  
 
Estimation of the matrix critical strain for microvoid instability from macroscopic 
fracture stain measures is confounded by the contributions of primary voiding in 
macroscopic fracture. The recent model of macroscopic fracture strain by 
Nahshon and Hutchinson accounts for the quantitative effects of both the stress 
triaxiality and strain state (e.g. plane strain vs. axisymmetric) as represented by 
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the third invariant of stress [27]. Measurements of instability strain in pure shear 
have the advantage of a reduced role of primary voiding and the plane strain 
condition of a crack tip, but are far removed from the triaxial tension stress state 
of mode I fracture. Fracture ductility data for uniaxial tension are more abundant 
and reflect the tensile stress state of a neck, but suffer from both a strong 
contribution from primary voiding and an axisymmetric strain state. Nonetheless, 
empirical correlation of the critical microvoiding strain measured by primary void 
growth with these macroscopic fracture ductility measures can provide a useful 
guide for estimating fracture toughness through our new correlations. 
 
Data of instability strain under pure shear are available for the secondary 
hardened (stage IV temper) AF1410, AerMet100 steels and other ultrahigh 
strength martensitic steel under stage I and stage III tempering conditions as 
plotted against the modulus normalized UTS in Fig. 5a [28,29]. Based on these 
data a model of shear instability strain has been developed correlating with UTS 
and elastic properties as [30] 

;<� � =()* >0? 51 0 @9
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where σu the UTS; E, Young’s modulus; φ and θ are fitting constant for secondary 
hardening alloys and UHS low alloy steels under stage I temper conditions. Shear 
instability strain is related to the microstructure and strain hardening behavior as 
well as the UTS. The uniaxial tensile fracture strains are plotted in Fig. 5b. Both 
the shear instability strain and fracture strain in tension decrease with increasing 
UTS. This trend is expected to maintain for the matrix critical strain as supported 
by Fig. 5c.  

 
 
 

 

 

 

 

 

 

 

 

Figure 5 Shear instability strain (a), fracture 
strain (b) and matrix critical strain (c) vs. 
modulus normalized UTS. The number attached 
to each line denotes stage I, III and IV temper, 
brown diamonds are UHS steels III temper and 
brown squares are 9%Ni steels  
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The critical strain vs. the estimated shear instability strain and the measured 
fracture strain are plotted in Fig. 6a and b, respectively. In Fig. 6a, the stage I 
steels and secondary hardening steels form separated groups but a rough 
correlation between εc and γin can be found. In Fig. 6b, a linear correlation 
between the critical stain and tensile fracture strain is found (εc ≅ 0.28εf), except 
for a few data points for stage I steels. Considering that fracture strain under plane 
strain conditions is in the range of 0.15~0.43εf, the factor 0.28 is a reasonable 
value for the matrix stress triaxiality of 2.1 as adopted in the present work.  
  

        
Figure 6 Critical strain vs. calculated instability strain in shear, a) and fracture strain, b)  

As the critical strain is defined, it is feasible to estimate the ductile fracture 
toughness base on the phenomenological model. The results are shown in Fig. 7. 
Considering the approximation in the model and the experimental deviations, the 
estimated values by the phenomenological model are reasonably well consistent 
with the data. 

 
Figure 7 Estimate of the normalized ductile toughness based on the phenomenological model  

 

5. Discussion 
5.1. Ductile fracture toughness and the strength 

The fracture toughness vs. the flow strength for the ultrahigh strength steels 
considered here are shown in Fig. 8, with the general trend that the toughness 
decreases with increasing strength. Despite the scaling of JIC with σ0 in Fig. 2, the 
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final behavior of Fig. 8 reflects a dominance of the strength dependence of γin, εf 
and εc, in Fig. 5. 

 
Figure 8 Fracture toughness vs. σσσσ0. Additional data points are added. Brown square: 9%Ni 
steels and solid purple triangle: HY180 with Ti.  

5.2. A phenomenological ductile fracture toughness model 
A phenomenological ductile fracture model is derived as  

���
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and 

εc = βεf 
where C0 =0.23, α =13, εf is the fracture strain in uniaxial tension and β ~0.28. 
Coalescence of primary voids is dominated by intervoid ligament instability. As 
the ductile fracture toughness is an exponential function of the critical strain, the 
critical strain thus plays a dominant role in ductile fracture toughness. 
  

6. Conclusion 
Based on a new analysis of literature data inspired by recent simulations, it is 
found that the ductile fracture toughness normalized by the flow stress and the 
spacing of the primary inclusions is a parabolic function of the critical primary 
void growth ratio. Solving a Rice-Tracey type equation under constant strain rate, 
the critical void growth ratio is an exponential function of the matrix critical strain 
for microvoid instability. This can in turn directly correlate the toughness with the 
critical instability strain and from this, a phenomenological model is suggested 
that the ductile fracture toughness is exponentially related to the critical strain, 
rather than a linear relation as previously assumed. The inverse strength 
dependence of this critical strain dominates the strength dependence of ductile 
fracture toughness. Control of the critical strain through microvoiding resistance 
is a significant opportunity for toughness enhancement.  
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