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1. Introduction 
 
Coatings are widely applied in friction conjunctions to increase the lifetime of the 
details. Coating fracture may occur in different ways. The surface wear is typical 
for the case of soft coatings; for the case of relatively hard coatings the wear 
process may be accompanied by the failure of the coating–substrate bond and the 
coating delaminating [1].  
 
Therefore, it is important to model the contact-wear fracture of the coating under 
its cyclic friction loading. The general approach to the investigation of the 
contact-wear fracture of rough bodies is presented in [2, 3]. The model of fatigue 
fracture of a homogeneous elastic half-space in sliding contact with a periodic 
system of indenters under different types of loading is developed in [4]. The 
model permits one to describe two phenomena - the simultaneous process of 
continuous surface wear, and the separation of a layer of finite thickness - by the 
same mechanisms of damage accumulation.  
 
To model the contact wear fracture of elastic bodies, it is necessary to know the 
distribution of stresses in the loaded body. For coated elastic bodies the model of 
two-layered elastic foundation is usually used to determine the contact 
characteristics (the size of contact zone and contact pressure distribution) and 
stresses inside the layer and the substrate. A contact problem for a punch and a 
two-layered elastic foundation can be solved using the integral transforms, i.e. 
method such as Fourier transform for 2-D problem  and Hankel transform for 
frictionless axisymmetric problem [5-8]. Such method is mostly analytical and 
usually assumes some calculations at the final step because of the complication 
form of inverse integral transforms. The computation simplicity and the high 
accuracy of results make this method suitable for axisymmetric and 2-D 
problems. The numerical methods are preferable for more complicated 3-D 
contact problems. The influence of the surface microgeometry parameters on the 
contact pressure and internal stresses inside the elastic layer bonded to the elastic 
substrate is analysed in [9–11]. The system of dies modelled a rough surface in 
contact interaction. The contact of real rough surfaces with coated bodies is 
considered numerically in [12-14]. The influence of friction on the distribution of 
internal stresses in the layered elastic half-space is studied in [8]. 
 
A model to study the kinetics of fatigue fracture of a layered elastic half-space in 
contact with a periodic system of indenters, which models the surface micro 
roughness, is presented here. 



2. Problem formulation and the method of solution. 
 
The sliding of a periodic system of spherical indenters of radius R on the 
boundary of a layered elastic half-space (Fig. 1) is considered. The indenters are 
located at the nodes of a hexagonal lattice with period l, and the direction of 
motion coincides with the direction of the axis (Ox). The system is loaded by the 
period-averaged nominal pressure pn and the tangential stresses τn, which are 
determined by the Coulomb–Amonton law, i.e., τn = µpn, where µ is the 
coefficient of the sliding friction. The layered elastic half-space consists of an 
elastic layer of thickness h and an elastic half-space; elastic properties of the layer 
and the half-space are characterized by the elasticity moduli Ei and the Poisson 
ratios νi (i = 1, 2 for the layer and for the half-space, respectively).  
 
During sliding the cyclic loads generate an inhomogeneous cyclic field of internal 
stresses, which is the cause of accumulation of fatigue damage and the fracture of 
the material surface layers. The model of the damage accumulation process 
proposed includes the following steps in calculations: 
• Calculation of the contact pressure for the periodic contact problem. 
• Calculation of the internal stresses taking into account the friction forces for 

the multiple contact. 
• Calculation of the damage accumulation function based on the appropriate 

phenomenological approach for description of the damage accumulation 
process. 

• Analysis of the fracture kinetics. 
 
2.1. The contact problem solution. 
 

 
Fig.1 Scheme of the periodic friction contact 

For a system of axially 
symmetrical indenters located 
at the nodes of a hexagonal 
lattices (Fig. 1), the relation 
between the load P acting on 
each indenter and the nominal 
pressure pn is the following  
      2( 3 / 2)

n
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where l is the lattice period.  
 
The conditions at the interface 
(z = h) between layer and 
substrate are determined by the 
relations 
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displacements of the elastic layer (i = 1) and the elastic substrate (i = 2). 
Coefficient k is the parameter of imperfect adhesion between the layer and the 
substrate; if k=0 the perfect adhesion takes place.  
 
Under the assumption that the influence of shear stresses on the distribution of 
contact normal stress is negligibly small, the following boundary conditions on 
the upper layer surface (z = 0) written in polar coordinates (r, θ) are considered: 
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Here f(r) is the indenter shape, δ is the indenter displacement along the axis (Oz), 
a is the radius of a contact zone ωi. 
 
The boundary conditions (2.3) are obtained using the localization principle 
formulated and proved in [2] for the case of penetration of a periodic system of 
indenters into the elastic half-space. The accuracy of the solution based on the 
problem formulation with boundary conditions (2.3) in comparison with one 
obtained from the exact problem formulation for the periodic system of indenters 
on the elastic half-space is also estimated there. To obtain the pressure 
distribution for a chosen indenter inside a contact zone r ≤ a, the action of the 
other indenters is replaced by the action of the nominal pressure pn distributed 
outside the circle with radius R1 (Fig. 1). The radius R1 is determined from the 
equilibrium equation and (2.1) as 
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The equilibrium equation has the form 
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where 2 2( ) ( )c cr x x y y= − + −  (хс and yс are the coordinates of the center of 
the considered indenter), ps(r) is the contact pressure distributed in each contact 
spot ωi (ps(r)= -σz(r), r∈ωi). 
 
The solution of the axisymmetrical contact problem for the layered elastic half-
space with boundary conditions (2.2) and (2.3) is obtained by the method 
presented in [9]. It consists of two stages. The first stage is to find the shape g(r) 
of the deformed surface of the unloaded circular zone 0 ≤ r ≤ R1 caused by the 
pressure pn applied outside it (R1 ≤ r < +∞); the following boundary conditions at 
the upper layer surface (z=0) are considered 

(1)

1
(1)

1
(1) (1)

0, 0
,
0, 0

z

z n

rz z

r R
p R r

r
θ

σ = < <
σ = − ≤ < ∞
τ = τ = ≤ < ∞

                                                                   (2.6) 



The problem is solved by using the Hankel integral transforms [9, 11]. 
 
At the second stage, the function g(r) is used to formulate the boundary conditions 
at the upper surface (z=0) of the elastic layer. To solve the contact problem, we 
divide the contact zone into K rings of equal thickness and determine the contact 
pressure as a piecewise function. Using the relations between the load and 
displacements [9] we find the influence coefficients i

jk , and reduce the problem to 
the following system of equations to determine the contact pressure: 
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To find the unknown radius of the contact zone, the condition of zero pressure on 
the boundary of the contact zone is used and the iteration method is applied. 
 
The analysis of the influence of the indenter shape, the surface layer relative 
thickness, and its mechanical characteristics on the distribution of contact 
pressures is presented in [11]. 
 
2.2 Calculation of the internal stresses 
 
The internal stresses in the layered elastic half-space are determined from the 
following conditions on the upper layer surface (z = 0): 
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At the interface (z = h) the boundary conditions are given by (2.2). 
 
The problem is solved by using the boundary element method. The contact zone is 
considered as a system of squares with side ∆s with a constant tangential stresses 
inside each square. The boundary conditions (2.9) are transformed to 
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Here p0 is the maximum contact pressure, and the dimensionless coefficients    k
jγ  

(0 ≤ k
jγ  ≤ 1), which determine the contact  tangential  stresses  in each square are 

obtained from the contact problem solution. 
 



The problem is reduced to the determination of the internal stresses due to a 
constant distributed load. It can be solved by the method based on double integral 
Fourier transforms [16]. For this case the boundary conditions are the following 
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The method based on the localization principle and the superposition is used to 
take into account mutual effect. 
 
2.3. Model of the contact fatigue in the surface layer.  
 
To model the contact fatigue in the surface layer, we use a macroscopic approach, 
developed in [2]-[4]. It involves the construction of the positive function Q(M,t) 
non-decreasing in time; the function characterizes the material damage at the 
point M(x, y, z), and depends on the stress amplitude values at this point. To study 
damage accumulation, the model of the damage linear summation is used (the 
damage increment at each moment does not depend on the value of the already 
accumulated damage). The fracture occurs at the time instant t* at which this 
function reaches a threshold level at some point. 
 
There are various physical approaches to the damage modeling, in which the rate 
of damage accumulation ∂Q(x, y, z, t)/∂t is considered as a function of stress at the 
given point, the temperature, and other parameters depending on the fracture 
mechanism, the type of material, and some other factors [3]. For the present 
study, we assume that the relation between the fatigue accumulation rate 
∂Q(x,y,z,t)/∂t and the amplitude value ∆τ1 of the principal shear stress at the point 
has the following form  
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where c and m are some experimentally determined constants and 
1( , , , )x y z tτ∆ is the amplitude value of the principal shear stress at the point      

(x, y, z) for one period of sliding loading. 
 
The problem is periodic, that’s why the damage function is independent of the 
coordinates x and y and depends only on the coordinate z and the time t (the time 
can be evaluated by the number of cycles N). The damage Q(z,N), which is 
accumulated at fixed point z during N cycles, is calculated from the relation 
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where Q0(z) is the distribution of the initial damage in the material and qn(z, n) is 
the rate of the damage accumulation independent of the coordinates x, y. 



The fracture occurs as the damage at some depth z* reaches the critical value. In a 
normalized system this condition is 

( *, *) 1Q z N =                                                                                                (2.13) 
where N* is the number of cycles before the fracture initiation. 
 
Calculation of the stress distribution in the elastic layer makes it possible to find 
the maximum amplitude values of the principal shear stresses along the axis (Ox), 
which coincides with the sliding direction. The maximum amplitude values occur 
in the plane passing through the geometric center of the contact zone (xc, yc). The 
function 1( , )z nτ∆  characterizes the maximum amplitude values of the principal 
shear stress. 
To calculate the number N* of cycles before the fracture initiation, the following 
relation is obtained from (2.11)-(2.13): 
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The damage function Q (z, N) is calculated by summation. In the assumption of 
zero initial damage the number of cycles N* before the first fracture at the depth 
h1 is calculated from the following relation: 
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If the maximum value of the function 1 ( )zτ∆  takes place inside the surface layer 
at a depth z*, the delaminating of the layer of thickness z* occurs, and the rest 
part of the surface layer comes into contact. The damage at this layer of thickness 
(h-z*) is determined by the function 

1*( ) * ( ( ,0))mQ z N c zτ= ∆  
The damage distribution Q*  must be taken into account in the further study of the 
process of damage accumulation.   
 
After the material detachment the function Q*(z) at the newly formed surface has 
a value close to the critical one. The surface wear occurs, and the elastic layer 
thickness decrease continuously after the first fracture. The next subsurface 
maximum may take place, and it may cause the second act of delaminating.  
 
If the function 1( ,0)zτ∆  has its maximum at the surface, the continuous surface 
wear takes place. The damage can also grow up at the interface (z=h).  
 
3. Results and discussion. 
 
The algorithm described above is used to calculate the kinetics of the fatigue wear 
of a layered elastic half-space by a periodic system of indenters of spherical shape 
located at the nodes of a hexagonal lattice. In the case of small strains, the 
indenter shape is described by the function f(r) = r2/(2R), where R is the indenter 



radius. It is obtained that contact and internal stresses depend on the following 
dimensionless parameters: the coating relative hardness χ = E1/E2, the coating 
relative thickness λ=h/l, the indenter relative radius R/l, the dimensionless average 
pressure pn/E1, interface adhesion coefficient k, and the friction coefficient µ. An 
analysis of the principal shear stresses τ1(x, y, z) is most interesting for studying 
the kinetics of the fatigue fracture of the surface layer. The analysis of the 
influence of the friction coefficient value and the contact density on the principal 
shear stress distribution and the amplitude values, determined by the function 

1( , )z nτ∆  is presented in [17] for the case of perfect interface adhesion (k=0). The 
function τ1(x, y, z) significantly depends on the value of the parameter χ [9]. The 
coatings are classified as relatively hard (χ > 1) and relatively soft (χ < 1) 
depending on the relative mechanical characteristics of the surface layer. The 
results presented here are obtained for relatively hard coatings.  
 
As follows from (2.15), the damage depends on the values of m and c. The 
amplitude values of the principal shear stresses are a function of the distance from 
the layer surface, that’s why it is possible to neglect the factor c if the time 
intervals are considered respectively to N* (the number of cycles before the first 
fracture). Then m becomes the only parameter, which determine the shape of the 
damage function.  
 
Some results of the damage function calculations for k=0 and k=100 are 
presented in Fig.2. For the case where the coating is relatively thick, its thickness 
is almost 2 times greater than the radius of contact zone. 
 

 
Fig.2 The damage distribution inside the elastic layer; m = 2 (a), m = 5 (b); the 
number of cycles: n/N* = 1 (curves 1, 1′ ), 1.298 (curves 2, 2′), 1.611 (curves 3, 
3′ ), 1.902 (curves 4, 4′ ), 2.209 (curves 5, 5′ ), and 2.612 (curve 6) for (a); n/N* 
= 1 (curves 1, 1′ ), 2.133 (curves 2, 2′), 2.333 (curves 3, 3′ ), 3.599 (curves 4, 4′ 
), 5.783 (curves 5, 5′ ), and 6.067 (curve 6) for (b); k=0 (curves 1, 2, 3, 4, 5, 6), 
k=100 (curves 1′, 2′, 3′, 4′, 5′ ); χ =2, pn/E1 =0.001, ν1 = ν2 =0.3, λ=0.3, µ=0.3,  
R/l =8. 
 



Black curves corresponds to the case of perfect interface adhesion (k=0), and blue 
curves are constructed for the case of k=100. For all cases, curve 1 corresponds to 
the first act of the subsurface fracture. The new thickness of the layer is 0.84 of 
the original thickness. The further fracture process may develop in different ways. 
For m = 2, the damage function for n > N* always has two local maxima, the main 
maximum is at the surface and the increasing local maximum is at the layer–
substrate interface. The surface wear occurs; the coating delaminating begins as 
the damage function comes to the critical value at the interface. For m = 5, the 
damage function after the first fracture act forms a local maximum not only at the 
interface but also inside the layer. This local maximum comes to the critical 
value, and then the next fracture occurs. For this case, there are four acts of 
subsurface fracture for the case of full interface adhesion (k=0) and three acts for 
the case of imperfect adhesion (k=100). The surface wear takes place between the 
fracture acts.  
 
For both cases (m=2 and m=5) the interface imperfection leads to the increase of 
interface maximum of the damage function. The reason is that principal shear 
stress concentration at the interface is greater than that for the case of full 
adhesion [11]. 
 

 
Fig.3 Evolution of the layer thickness in 
time; χ=2 (curves 1-3), χ=1 (curve 4), 
pn/E1 =0.001, ν1 = ν2 =0.3, λ=0.3, µ=0.3, 
R/l =8;  m = 2 (curves 1, 4), m = 5 
(curves 2, 3), k=0 (curves 1, 2, 4), k=100 
(curve 3). 

 

The results of computation of the 
fracture kinetics are presented at 
Fig. 3. Curve 4 is calculated for the 
homogeneous half-space with the 
same material elastic and strength 
properties (m = 2) as the coating 
material. The loading conditions 
coincide with the conditions for the 
layered half-space. The function 
hn/h characterizes the displacement 
of the upper bound of the elastic 
layer (a decrease in the coating 
thickness) because of its fracture. 
The jumps correspond to the acts of 
subsurface fracture accompanied 
with detachment of the layers of 
coating material. Between these 
acts, the surface wear occurs. Note, 
that the interface imperfection does 
not influence essentially the wear 
rate 

(see curves 2, 3). For m = 5, the time interval before each fracture act increases, 
while the thickness of the separated layers decreases. For the case of the 
homogeneous elastic half-space a steady-state wear process with analytically 
determined constant wear rate occurs [3] for frictionless sliding contact. The 



computation results are obtained for the friction loading of a homogeneous elastic 
half-space (curve 4), and the wear rate function also tends to a constant value. 
 
4. Conclusions 
 
A model for calculation of the contact wear damage and simulation of the elastic 
layer fracture process in proposed in the study. It is obtained that for the elastic 
coating layer-by-layer fracture may occur as a result of damage accumulation, as 
well as the surface fatigue wear and the coating delaminating. The fracture 
process depends on the material strength properties and the amplitude values of 
stresses, which are determined by elastic properties of the layered half-space, the 
contact geometry and the layer-substrate adhesion. The wear kinetics for the 
layered half-space differs from the kinetics for the homogeneous half-space under 
the same loading conditions. The surface wear rate caused by the contact fatigue 
is not constant, which it accounted for by the changes of stress distributions as the 
surface layer thickness decreases during fracture. 
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