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ABSTRACT

The presence of stress and material interfaces in hydrocarbon reservoirs may significantly
complicate prediction of hydraulic fracture propagation, as the spatial resolution of numer-
ical codes is usually insufficient to capture the details of the fracture-interface interaction
at the early stages of the crossing. Thus, an explicit analytical and experimental investi-
gation of the leading edge of the fracture normally crossing a stress interface (where the
stress component normal to the fracture plane is discontinuous) is undertaken under condi-
tions when solid toughness, fluid leak-off, and fluid lag are negligible. The analytical plane
strain solution corresponds to that of a semi-infinite hydraulic fracture, which propagation
velocity varies with the penetration depth past the interface. When appropriately scaled,
the solution depends on a single dimensionless penetration depth parameter or time. Com-
parison with the experimental results for initially penny-shape hydraulic fractures crossing
a stress interface in PMMA shows remarkable agreement in a wide range of penetration
values.

1 INTRODUCTION

Numerical modelling of a hydraulic fracture as it grows past a sudden jump in
the in situ stress field and/or material properties requires the leading edge to be
appropriately resolved on a lengthscale which is typically much smaller that the
desired spatial resolution of a numerical method. One possible approach to over-
come this difficulty relies on enriching the numerical algorithm with a “tip logic,”
which means that the correct leading edge (‘tip’) asymptotic solution in the imme-
diate vicinity of a stress boundary is embedded in the numerical algorithm. The tip
solution considered in this paper depends only on the local values (near the fracture
front) of the material and fracture properties, such as the rock and fluid properties,
the magnitude and the sign of the stress jump, the penetration past the interface,
and the velocity of the fluid flowing into the tip region [1, 2]. The latter acts as a
parameter that couples the tip solution to the overall fracture solution. The tip solu-
tion, provided in this paper under conditions of zero fracture toughness, zero fluid
leak-off, and zero fluid lag, is compared, and shown to be in good agreement with
the results of zero-toughness, laboratory scale hydraulic fracturing experiments.

2 TIP SOLUTION

2.1 Model Formulation

Consider a semi-infinite fluid-driven fracture propagating under a plane strain con-
dition at initially constant velocity Vo in the direction of the fixed coordinate axis



X , see Fig. 1. The fracture propagates in the plane perpendicular to the minimum
in-situ confining stress, which magnitude σ(X) = σo±∆σ H(X) (where H(X) is
the Heaviside step function) changes step-wise at the interface X = 0 from σo to
σ1 = σo±∆σ . Here ∆σ is the magnitude of the stress jump, while the sign cor-
responds to the sense of the jump (’+’ corresponds to a positive jump, or stress
increase in the direction of the crack propagation; and ’−’ corresponds to a neg-
ative jump, or stress decrease in the direction of crack propagation). Upon the
moment when the fracture tip reaches (and crosses) the stress interface Xtip ≥ 0, the
fracture tip velocity V is expected to deviate from its initially constant value Vo with
increasing penetration depth λ = Xtip ≥ 0.
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Figure 1: Hydraulic fracture tip crossing a stress interface.

Propagation of the semi-infinite fluid-driven fracture across a stress interface is con-
sidered under the following assumptions of: (i) unidirectional lubrication flow of
incompressible Newtonian fluid in the crack; (ii) zero fluid leak-off (e.g., imper-
meable solid); (iii) linear elastic solid with zero toughness (e.g., fracture propagates
along preexisting weakness plane or discontinuity); (iv) homogeneous solid proper-
ties and perfectly-bonded stress interface (i.e., no opening or shearing of the physi-
cal interface corresponding to mathematical stress jump in response to the crossing
fracture is allowed); and (v) fluid front coincides with the fracture tip (i.e., zero
fluid lag).

Under the above assumptions, the solution for the crack opening w, fluid pressure
p f , and crack tip penetration depth λ as a function of time t (t = 0 when λ = 0)
and distance from the crack tip x = Xtip−X > 0 (w and p f only) is governed by the
following equations.

The fluid flow in the fracture is governed by lubrication equations (local fluid mass
balance and Poiseuille’s law) written in the coordinate system (x) moving with crack
tip
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respectively. Here µ ′ = 12µ is a multiple of dynamic fluid viscosity µ .



Opening of the crack faces w is related to the applied net loading p f −σ via [3]
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where E ′ is the plane strain solid modulus and the integral kernel is defined as
K(z) = ln(|1+

√
z|/ |1−√z|)− 2/

√
z. The crack tip stress intensity factor KI in

(2) is zero, KI = 0, under the assumed condition of zero solid toughness,

2.2 Solution

The structure of the solution can be understood by considering the near (x→ 0)
and the far (x→ ∞) field asymptotics of a semi-infinite fluid-driven crack under
the previously stated assumptions (e.g., [3, 2, 1]). Since the near or far fields are
characterized by distances from the tip either much smaller or much larger then the
distance to the stress interface, respectively, it is expected that the solution there is
dominated by the locally homogeneous stress field(s). The corresponding asymp-
totics can be written in the form

w = βo L1/3
m (v)x2/3,

p f −σ

E ′
= δo L1/3

m (v)x−1/3 (3)

where the fluid velocity v takes on the value of the instantaneous crack tip velocity
V (t) in the near field and a value Vo in the far field:

x→ 0 : v = V (t), σ = σo±∆σ H(λ (t))
x→ ∞ : v = Vo σ = σo

(4)

In (3), βo = 21/335/6, δo =−6−2/3, and Lm(v) is a characteristic lengthscale of vis-
cosity processes defined as a product of fluid velocity v on a characteristic timescale
Tm as follows

Lm(v) = vTm, Tm =
µ ′

E ′
. (5)

To justify (3), consider crack propagation prior to the crossing (λ (t) ≤ 0) when
the solution is independent from the distance to the interface and, therefore, cor-
responds to that of a semi-infinite crack steadily propagating in the homogeneous
stress field σo. The solution [4, 5, 6] for this case is characterized by the uniform
fluid velocity along the crack, v(x) = Vo, and is given by (3) everywhere along the
crack (not just in the near or far fields). The non-LEFM form of the crack opening
in (3), w ∼ x2/3 and corresponding negative net pressure singularity, p ∼ −x−1/3

are the consequence of the coupling between the lubrication fluid flow and the
elastic crack deformation in the tip region under conditions of zero lag and zero
fracture toughness. The latter implies negligible energy release rate at the crack
tip as compared to the energy dissipation in the viscous fluid flow along the crack
[1, 2, 3]. The perturbation introduced into the solution near the tip once it crosses
the interface (λ (t) > 0) does not change the far field fluid velocity (away from this
perturbation), which, therefore, remains equal to the constant Vo at all times.



In view of the above, the solution after the crossing (λ (t) > 0) is sought as a time-
dependent transition between the near and far fields given by (3-5). The numerical
method is based on the extension of the approach originally developed for the so-
lution of steady semi-infinite crack propagation [3, 2], where the extension allows
the method to handle time-dependent propagation. The original approach relies on
definition of a computational interval x ∈ (x0,x∞) such that the solution outside of
this interval is approximated by the respective (near or far field) asymptote. Net
pressure is then approximated by a piecewise constant function over a discretized
computational interval. Using the net-pressure approximation, the elasticity inte-
gral (2) for the crack opening is then evaluated exactly. The resulting net-pressure
and opening approximations are used with a finite-difference approximation of the
lubrication equations (1) to provide a system of ordinary differential equations to
be solved for the time evolution of the net-pressure at the discretization grid points,
and of the penetration depth. Complete details of the solution are to be published
elsewhere [1].

In solving this problem, it is important to acknowledge that the solution posses a
universal scaling [1]
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where small number ε, lengthscale L(v) and timescale T are defined as follows

ε =
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∆σ3 . (7)

This scaling (6) means that the positive and negative stress jump cases each can be
described by one universal solution for the normalized penetration Λ, crack tip ve-
locity V , crack opening W and the net-pressure P as functions of normalized time
t/T and distance from the tip x/L(Vo). The basic character of these tip solutions is
discussed later, in the context of the comparison to the results of the experimental
program, as described next.

3 EXPERIMENTAL PROCEDURE

A sketch of the experimental system used to monitor fluid-driven fracture growth
through stress interfaces is shown in Fig. 2. The experimental method makes use
of hydraulic fracture growth along the unbonded interface between two 355 x 400
x 175 mm PMMA blocks stacked one on top of the other. A 50 mm wide strip
region of lower stress has been created along the interface by machining the contact
surfaces of one of the blocks according to the Flamant solution, e.g., [7],
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where uz is the machining depth at location x, ∆σ = 4.3 MPa is the desired stress
contrast and 2a = 50 mm is the strip width [8]. The arbitrary constant C is chosen
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Figure 2: Sketch of the experimental system. The inset shows the details of the
bottom-hole injection assembly.

here so that the displacement at the edge of the block is zero. Additionally, the plane
strain modulus E ′ = 3930 MPa is the elastic property of the PMMA material as de-
termined by uniaxial compression testing of a cylindrical strain-gauged specimen.

The blocks were uniaxially loaded using water-filled stainless steel flat jacks in a
reaction frame that has been specially modified to allow viewing of the specimen
during the experiment. The total applied vertical load was measured using four load
cells located beneath the PMMA base platen. Fluid was injected into the interface
via a 5 mm radius borehole located in the low stress region for the positive stress
jump experiments, Fig. 3a, and in the high stress region for the negative stress
jump experiments, Fig. 3b, using the constant displacement pump and a small
straddle packer system to isolate a 5 mm long interval across the interface (Fig.2,
inset). The initially penny-shape fractures loose their symmetry once the stress
interface is reached by the fracture leading edge, developing the asymmetric foot
print qualitatively shown on Fig. 3(a-b) with the continual propagation biased in
the low stress region.

The growing fracture was monitored using a Canon XM2 digital video camcorder
and a backlight that is built into the steel base plate. The recordings are used to
monitor the location of the crack front and to produce an approximation of the light
intensity profile resulting from the presence of colored fracture fluid being injected
into the interface. The full-field fracture opening width is recovered from these



Figure 3: Stress and injection configuration for (a) positive stress jump and (b)
negative stress jump experiments. Thick lines indicate the sections chosen for com-
parison with the tip solutions.

recordings by applying the Beer-Lambert law w = k log10(I0/I), where I0 and I
are the greyscale intensity values for a particular image pixel before and after a
hydraulic fracture reaches that point and k = 0.17 mm is a calibration constant for
the fracture fluid [9].

The following two experiments performed in the PMMA block with ∆σ = 4.3 MPa
are used for the purpose of comparison with the tip solution:

• positive stress jump experiment with fluid injection rate Q = 0.0017 mL/s,
fluid viscosity µ = 30.2 Pa s, σhigh = 6.5 MPa; and

• negative stress jump experiment with Q = 0.0008 mL/s, µ = 4.46 Pa s, σhigh =
7.52 MPa.

4 COMPARISON BETWEEN THE TIP SOLUTION AND EXPERIMENTS

4.1 Positive Stress Jump

Evolution of the penetration depth λ is shown on Fig. 4a. The indicated value of
the timescale T , (7), is determined by the fluid and solid properties and magnitude
of the stress jump given in the previous Section, while the value of the crack tip
velocity just prior to the crossing, Vo, is established by matching the experimental
points with linear dependency Vot. The evolution of the crack tip past the inter-
face in the tip solution with constant Vo agrees well with the experimental data up
to penetration depths of about 10 mm. Comparison of the experimental fracture
opening profiles (dots) with the tip solution using constant far field fluid velocity Vo
(dashed lines) is shown on Fig. 5. The eventual deviation of the tip solution from
the experimental data is expected as the far field fluid velocity, set to the constant
Vo value in the tip solution, is bound to change (decrease) from this value in the
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experiment. This change is underpinned by (i) partial redirection of the fluid flow
along the interface (since fracture would tend to propagate more easily in that direc-
tion rather than into the high stress area across the interface, Fig. 3a); (ii) influence
of the finite geometry of the experimental fracture that is not accounted for in the
semi-infinite tip solution.

To improve the predictive capability of the tip solution, assume that the far field fluid
velocity is evolving on a timescale smaller than the timescale that is intrinsic to the
tip solution, T (7). If this separation of timescales exists, then the tip solution, with
Vo equal to the instantaneous value of the time-dependent far field fluid velocity, can
be regarded as a “steady state” approximation of the tip region. To find the steady
state evolution of the far field fluid velocity in the tip solution, V ss

o (t), we simply
equate the experimental penetration depth λ experiment(t) to the tip solution (6a)-(7)
evaluated at unknown Vo = V ss

o (t), i.e.

λ
experiment(t) = V ss

o (t)T Λ(t/T ) (8)

Resulting V ss
o (t) and the corresponding steady state crack tip velocity, V ss(t) =

V ss
o (t)V (t/T ), are shown in Fig. 4b. Corresponding crack opening profiles, shown

by solid lines on Fig. 5, agree very well with the experiment in practically entire
penetration depth range.

4.2 Negative Stress Jump

Similar to the earlier presentation of the results for the positive stress jump case,
Fig. 6 shows (a) evolution of the penetration depth λ in the negative stress jump
experiment, contrasted to the tip solution (dashed line), for indicated values of T
and Vo; (b) the evolving steady state far field fluid velocity, (8), and corresponding
crack tip velocity in the tip solution (dots), contrasted with the crack tip velocity in
the tip solution when one takes a constant far field fluid velocity value Vo (dashed
line). The corresponding comparison of the crack opening profiles is shown in Fig.
7. The tip solution with the constant Vo (dashed lines) agrees with the experimental
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data only in very narrow (about 2 mm) initial penetration depth range. This state of
affairs may indicate (among other possibilities) that (i) the far field fluid velocity for
the tip region of the experimental fracture deviates (increases) very fast from the ini-
tial value Vo, owing to the rapid normal and tangential expansion of the fracture into
the low stress (penetrated) side (Fig. 3b); and (ii) the existence of a non-negligible
fluid lag. The fluid lag, which would not alter the transmission of light through the
specimen, cannot be detected by the optical methods used here, leaving the check
of the latter conjecture to future experimental and theoretical work. Nevertheless,
the use of the steady state evolving far field fluid velocity in the tip solution, as
detailed earlier for the positive stress jump case, allows for a good agreement of
the theoretical (solid lines) and experimental crack opening profiles on Fig. 7 over
nearly the entire experimental penetration depth range.

5 CONCLUSIONS

This paper compares the results from a theoretical solution of the tip region of a
fluid-driven fracture crossing a stress interface with the experimental results for
propagation of initially penny-shaped fractures across engineered stress jumps in



PMMA. The theoretical tip solution is limited in its original formulation to a small
penetration depth range, where the fluid flow velocity into the tip region is approx-
imately constant and equal to its value at the onset of crossing. This limitation is
overcome by allowing the fluid flow velocity into the tip region to vary in the tip
solution to reflect its changing nature in the experiment. Using this modified ap-
proach, the theoretical and experimental crack opening profiles are shown to be in
close agreement throughout the entire measured range of penetration depths.
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