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It is well known that classical linear crack problems in solid mechanics
are characterized by linear boundary conditions imposed at the crack faces.
Such linear models allow the opposite crack faces to penetrate each other
which leads to inconsistency with practical situations. Since the beginning of
1990, the crack theory with non-penetration conditions is under active study.
This theory is characterized by inequality type boundary conditions at the
crack faces. The book [1] contains results for models with non-penetrations
for different constitutive laws, i.e. 2D and 3D models as well as plate and
shell models with inequality type boundary conditions are analyzed. After
publication of this book, new approaches and trends in study of non-linear
crack models with the non-penetration have been developed. For example,
a problem of differentiation of the energy functional with respect to crack
perturbations is solved in a general setting, smooth and fictitious domain
methods are proposed, invariant integrals are constructed in cases of differ-
ent geometrical situations, etc. We refer the reader to publications [2], [3],
[4], [5], [6], [7], [8]. Moreover, it turned out that many practical problems
should be described by crack models with non-penetration for overlapping
domains. For example, the overlapping approach is applicable for description
of a subduction phenomenon of tectonic plates, a slipping phenomenon of ice
plates, construction of complicated precise level devices, etc. Considering
suitable structures, we actually may consider Riemann surfaces with two or
more sheets having cracks with inequality type boundary conditions at the
crack faces [9], [10]. Similar structures can be also found in animate nature.
For instance, fish scales can be seen as multi-layer structure which needs an
overlapping domain approach for their description. In engineering practice,
structures like ”patches” at the crack tips also can be used, i.e, we obtain
overlapping domain description. In the talk, some last results obtained in
this nonlinear crack theory are discussed, including overlapping domain ap-
proach.

Problem formulation. Let Ω ⊂ R2 be a bounded domain with smooth
boundary Γ, and γ ⊂ Ω be a smooth curve without self-intersections, Ωγ =
Ω\γ. It is assumed that γ can be extended in such a way that this extension
crosses Γ at two points, and Ω is divided into two subdomains D1 and D2

with Lipschitz boundaries ∂D1, ∂D2, meas(Γ ∩ ∂Di) > 0, i = 1, 2. Denote
by ν = (ν1, ν2) a unit normal vector to γ. We assume that γ does not contain
its tip points, i.e. γ = γ \ ∂γ. Equilibrium problem for a linear elastic body
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occupying Ωγ is as follows. In the domain Ωγ we have to find a displacement
field u = (u1, u2) and stress tensor components σ = {σij}, i, j = 1, 2, such
that

−divσ = f in Ωγ, (1)

σ = Aε(u) in Ωγ, (2)

u = 0 on Γ, (3)

[u]ν ≥ 0, [σν ] = 0, σν · [u]ν = 0 on γ, (4)

σν ≤ 0, στ = 0 on γ±. (5)

Here [v] = v+ − v− is a jump of v on γ, and signs ± correspond to positive
and negative crack faces with respect to ν, f = (f1, f2) ∈ L2(Ωγ) is a given
function,

σν = σijνjνi, στ = σν − σν · ν, στ = (σ1
τ , σ

2
τ ), σν = (σ1jνj, σ2jνj),

the strain tensor components are denoted by εij(u),

εij(u) =
1

2
(ui,j + uj,i), ε(u) = {εij(u)}, i, j = 1, 2.

Elasticity tensor A = {aijkl}, i, j, k, l = 1, 2, is given, and it satisfies the usual
properties of symmetry and positive definiteness

aijklξklξij ≥ c0|ξ|2, ∀ ξij, ξij = ξji, c0 = const > 0,

aijkl = aklij = ajikl, aijkl ∈ L∞(Ω).
The first condition in (4) is called the non-penetration condition. It

provides a mutual non-penetration between the crack faces γ±. The second
condition of (5) provides zero friction on γ. For simplicity we assume a
clamping condition (3) at the external boundary Γ.

Note that a priori we do not know points on γ where strict inequalities in
(4), (5) are fulfilled. Due to this, (1)-(5) is a free boundary value problem. If
we have σν = 0 then, together with στ = 0, the classical boundary condition
σν = 0 follows which is used in the linear crack theory. On the other hand,
due to (4), the condition σν < 0 implies [u]ν = 0, i.e. we have a contact
between the crack faces at a given point. The strict inequality [u]ν > 0 at a
given point means that we have no contact between the crack faces.

The problem (1)-(5) is well posed. Therefore, there is a unique weak
solution to the associated variational inequality. We introduce also the so-
called smooth domain formulation which is equivalent to (1)-(5).

First of all we note that problem (1)-(5) corresponds to minimization of
the energy functional. To check this, introduce the Sobolev space

H1
Γ(Ωγ) = {v = (v1, v2) | vi ∈ H1(Ωγ), vi = 0 on Γ, i = 1, 2}
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and closed convex set of admissible displacements

K = {v ∈ H1
Γ(Ωγ) | [v]ν ≥ 0 a.e. on γ}. (6)

In this case the problem

min
v∈K





1

2

∫

Ωγ

σij(v)εij(v)−
∫

Ωγ

fivi





has (a unique) solution u satisfying the variational inequality

u ∈ K, (7)∫

Ωγ

σij(u)εij(v − u) ≥
∫

Ωγ

fi(vi − ui) ∀v ∈ K, (8)

where σij(u) = σij are defined from (2).
Problem formulations (1)-(5) and (7)-(8) are equivalent. Any smooth

solution of (1)-(5) satisfies (7)-(8) and conversely, from (7)-(8) it follows (1)-
(5).

Below we provide one more equivalent formulation for the problem (1)-
(5), the so-called smooth domain formulation. To this end, we first discuss
in what sense boundary conditions (4)-(5) are fulfilled. Denote by Σ a closed
curve without self-intersections of the class C1,1, which is an extension of γ
such that Σ ⊂ Ω, and the domain Ω is divided into two subdomains Ω1 and
Ω2. In this case Σ is the boundary of the domain Ω1, and the boundary of
Ω2 is Σ ∪ Γ.

Introduce the space H
1
2 (Σ) with the norm

‖v‖2

H
1
2 (Σ)

= ‖v‖2
L2(Σ) +

∫

Σ

∫

Σ

|v(x)− v(y)|2
|x− y|2 dxdy (9)

and denote by H− 1
2 (Σ) a space dual of H

1
2 (Σ). Also, consider the space

H
1/2
00 (γ) =

{
v ∈ H

1
2 (γ) | v√

ρ
∈ L2(γ)

}

with the norm

‖v‖2
1/2,00 = ‖v‖2

1/2 +

∫

γ

ρ−1v2,
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where ρ(x) = dist(x; ∂γ), and ‖v‖1/2 is the norm in the space H1/2(γ). With
the above notations, it is possible to describe in what sense boundary condi-
tions (4)-(5) are fulfilled. Namely, the condition σν ≤ 0 in (5) means that

〈σν , φ〉1/2,00 ≤ 0 ∀ φ ∈ H
1/2
00 (γ), φ ≥ 0 a.e. on γ,

where 〈·, ·〉1/2,00 is a duality pairing between H
−1/2
00 (γ) and H

1/2
00 (γ). The

condition στ = 0 in (5) means that

〈σi
τ , φ〉1/2,00 = 0 ∀ φ = (φ1, φ2) ∈ H

1/2
00 (γ), i = 1, 2, φiνi = 0.

The last condition of (4) holds in the following sense

〈σν , [u]ν〉1/2,00 = 0.

Smooth domain formulation. Notice that the solution of the problem
(1)-(5) satisfies (7)-(8), thus the condition

[σν] = 0 on γ

holds, and therefore it can be proved that in the distributional sense

−divσ = f in Ω.

Hence, the equilibrium equations (1) hold in the smooth domain Ω.
Introduce the space for stresses defined in Ω,

H(div) = {σ = {σij} | σ, divσ ∈ L2(Ω)}

and the set of admissible stresses

H(div; γ) = {σ ∈ H(div) | στ = 0, σν ≤ 0 on γ}.

We see that for σ ∈ H(div), the boundary condition στ = 0, σν ≤ 0 on

γ are correctly defined in the sense of H
−1/2
00 (γ). Thus, we can provide the

smooth domain formulation for the problem (1)-(5). It is necessary to find
a displacement field u = (u1, u2) and stress tensor components σ = {σij},
i, j = 1, 2, such that

u ∈ L2(Ω), σ ∈ H(div; γ), (10)

−divσ = f in Ω, (11)∫

Ω

Cσ(σ − σ) +

∫

Ω

u(divσ − divσ) ≥ 0 ∀σ ∈ H(div; γ). (12)
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Here the tensor C = {cijkl} is obtained by inverting the Hooke’s law (2),
i.e. Cσ = ε(u). It is possible to prove a solution existence to the problem
(10)-(12). Moreover, any smooth solution of (1)-(5) satisfies (10)-(12) and
conversely, from (10)-(12) it follows (1)-(5), i.e. (1)-(5) and (10)-(12) are
equivalent. Advantage of the formulation (10)-(12) is that it is given in
the smooth domain. This formulation reminds contact problems with thin
obstacle when restrictions are imposed on sets of small dimensions ([11]).

Fictitious domain method. We can provide a connection between the
problem (1)-(5) and the Signorini contact problem. It is turned out that the
Signorini problem is a limit problem for a family of problems like (1)-(5).
First, we remind a formulation of the Signorini problem. Let Ω1 ⊂ R2 be
a bounded domain with smooth boundary Γ1, Γ1 = γ ∪ Γ0, γ ∩ Γ0 = ∅,
measΓ0 > 0. For simplicity, we assume that γ is a smooth curve (without
its tip points). Denote by ν = (ν1, ν2) a unit normal inward vector to γ. We
have to find a displacement field u = (u1, u2) and stress tensor components
σ = {σij}, i, j = 1, 2, such that

−divσ = f in Ω1, (13)

σ = Aε(u) in Ω1, (14)

u = 0 on Γ0, (15)

uν ≥ 0, σν ≤ 0, στ = 0, uν · σν = 0 on γ. (16)

Here f = (f1, f2) ∈ L2
loc(R

2) is a given function, A = {aijkl}, i, j, k, l = 1, 2,
is a given elasticity tensor, aijkl ∈ L∞loc(R2), with the usual properties of
symmetry and positive definiteness.

The problem (13)-(16) has a variational formulation. Namely, denote

H1
Γ0

(Ω1) = {v = (v1, v2) ∈ H1(Ω1) | vi = 0 on Γ0, i = 1, 2}
and introduce the set of admissible displacements

Kc = {v = (v1, v2) ∈ H1
Γ0

(Ω1) | vν ≥ 0 a.e. on γ}.
In this case the problem (13)-(16) is equivalent to minimization of the func-
tional

1

2

∫

Ω1

σij(v)εij(v)−
∫

Ω1

fivi

over the set Kc and can be written in the form of variational inequality

u ∈ Kc, (17)∫

Ω1

σij(u)εij(v − u) ≥
∫

Ω1

fi(vi − ui) ∀v ∈ Kc. (18)
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Here σij(u) = σij are defined from the Hooke’s law (14). Variational in-
equality (17)-(18) is equivalent to (13)-(16). It is possible to prove that the
problem (13)-(16) is a limit problem for a family of problems like (1)-(5).

In what follows we provide some comments on this score. First of all we
extend the domain Ω1 by adding a domain Ω2 with smooth boundary Γ2. An
extended domain is denoted by Ωγ, and it has a crack (cut) γ. Boundary of
Ωγ is Γ ∪ γ±. Denote Σ0 = Γ1 ∩ Γ2, Σ = Σ0 \ Γ, thus Σ does not contain its
tip points.

We introduce a family of elasticity tensors with a positive parameter λ,

aλ
ijkl =

{
aijkl in Ω1

λ−1aijkl in Ω2.

Denote Aλ = {aλ
ijkl}, and in the extended domain Ωγ, consider a family of the

crack problems. Find a displacement field uλ = (uλ
1 , u

λ
2), and stress tensor

components σλ = {σλ
ij}, i, j = 1, 2, such that

−divσλ = f in Ωγ, (19)

σλ = Aλε(uλ) in Ωγ, (20)

uλ = 0 on Γ, (21)

[uλ]ν ≥ 0, [σλ
ν ] = 0, σλ

ν · [u]ν = 0 on γ, (22)

σλ
ν ≤ 0, σλ

τ = 0 on γ±. (23)

As before, [v] = v+ − v− is a jump of v through γ, where ± fit positive
and negative crack faces γ±. We see that for any fixed λ > 0 the problem
(19)-(23) describes an equilibrium state of linear elastic body with the crack
γ where non-penetration conditions are prescribed. Hence, the problem (19)-
(23) is exactly the problem like (1)-(5), and we are interested in passage to
the limit as λ → 0. In particular, the problem (19)-(23) admits a variational
formulation. It can be proved that the following convergence takes place as
λ → 0

uλ → u0 strongly in H1
Γ(Ωγ), (24)

uλ

√
λ
→ 0 strongly in H1(Ω2), (25)

where u0 = u on Ω1, i.e. a restriction of the limit function from (24) to Ω1

coincides with the unique solution of the Signorini problem (13)-(16). From
(24)-(25) it is seen that the limit function u0 is zero in Ω2. On the other
hand, generally speaking, there is no limit of σλ in Ω2 as λ → 0. Thus, the
domain Ω2 can be understood as non-deformable body. This means that the
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Signorini problem is, in fact, a crack problem with non-penetration condition
between crack faces, where the crack γ is located between the elastic body
Ω1 and non-deformable body Ω2. It is worth noting that we can write the
problem (19)-(23) in the equivalent form in the smooth domain Ωγ ∪ γ by
using the smooth domain formulation.

Overlapping domain problem. Again, let Ω ⊂ R2 be a bounded
domain with smooth boundary Γ. Assume that the set γ = (0, 1) × {0}
belongs to Ω. Consider a neighborhood ω ⊂ Ω of the point (1, 0) with smooth
boundary ∂ω assuming that (1, 0) does not belong to Γ. Let ν = (ν1, ν2)
be a unit normal vector to γ, and n = (n1, n2) be outward normal unit
vector to ∂ω. In our considerations, domain Ω corresponds to an elastic
body with the crack γ, and ω fits for another elastic body. The body ω can
be viewed as elastic ”patch” imposed in the neighborhood ω of the crack
tip (1, 0). In further analysis, rigidity properties of ω would depend on a
parameter δ. For any fixed rigidity parameter we can find the derivative of
the energy functional with respect to the crack length which is related to the
Griffith criterion of crack propagations. Allowing the rigidity of the body ω
going to infinity we derive the limit problem for the body Ωγ with the crack
γ and a rigid ”patch”. This particular problem is also analyzed from the
standpoint of differentiability of energy functional. The principal interest
concerns relations between the energy derivatives for the limit problem and
the problem for the body with the elastic ”patch”. The main result obtained
states that derivatives converge as δ → 0.

Consider tensors of elasticity A = {aijkl}, B = {bijkl}, i, j, k, l = 1, 2,
with usual properties of symmetry and positive definiteness. For simplic-
ity we assume that aijkl, bijkl are constants. Let δ be a positive param-
eter. Problem formulation of the equilibrium problem for the two elas-
tic bodies with the glue set ∂ω is as follows. We have to find functions
uδ(x) = (uδ

1(x), uδ
2(x)), vδ(z) = (vδ

1(z), vδ
2(z)), x ∈ Ωγ, z ∈ ω, such that

−divσδ = f in Ωγ \ ∂ω, (26)

σδ = Aε(uδ) in Ωγ, (27)

−divpδ = 0 in ω, (28)

pδ =
1

δ
Bε(vδ) in ω, (29)

uδ = 0 on Γ, (30)

[uδ]ν ≥ 0, [σδ
ν ] = 0, σδ

ν ≤ 0, σδ
τ = 0, σδ

ν · [uδ]ν = 0 on γ, (31)

uδ = vδ, [σδn] = pδn on ∂ω. (32)
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Here σδ = {σδ
ij}, pδ = {pδ

ij} are stress tensors for the first and the second
bodies, respectively, i, j = 1, 2; σδ

τ = σδν − σδ
ν · ν, σδν = (σδ

1jνj, σ
δ
2jνj), σδ

ν =
σδ

ijνjνi.
The Hooke law (29) depends on δ. We first consider the problem (26)-

(32) for any fixed δ, and next analyze a passage to the limit as δ → 0. On
the glue set ∂ω it is necessary to impose boundary conditions (32) for δ > 0.

Note that equilibrium equations (26) hold in Ωγ \∂ω, and simultaneously,
the Hooke law (27) holds in Ωγ.

We can justify a passage to the limit as δ → 0 in (26)-(32).
For the problem (26)-(32) it is possible to find the derivative Gδ of the

energy functional with respect to the crack length. Also, it is possible to find
the derivative G0 of the energy functional with respect to the crack length
for the limit problem corresponding δ = 0. Moreover we can prove that
Gδ → G0, see [10].
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