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1 Introduction 
 
Generally, fracture mechanics problems for cracked solids under dynamic loading 
can be solved using advanced numerical methods, since the analytical solutions 
are limited to a relatively small number of idealized model problems 
corresponding to very special geometrical configurations and loading conditions. 
Previously, a considerable amount of work was devoted to cracked homogeneous 
materials [1–3]. The case of inter-component cracks received much less attention 
due to the substantial complications which arise in numerical solution of such 
problems. Primarily, the publications concerning crack fracture in composite 
materials are focused on static loading. However, understanding the mechanism 
of dynamic fracture in composite materials becomes more and more important 
with the increased use of composites in modern engineering, where the 
components are frequently subjected to dynamic loadings, see, for example [4–9]. 
 
In paper [10], the system of boundary integral equations for the general case of an 
interface crack between two dissimilar elastic materials under dynamic loading 
was derived. In papers [11–13], the derived integral system was solved 
numerically by the method of boundary elements for the case of a penny-shaped 
interface crack under normally incident tension-compression wave. The 
distributions of displacements and tractions were computed for several typical 
materials of half-spaces. It was shown that with decreasing frequency of the 
loading the dynamic solution tends to the static one, and the obtained numerical 
results are in a very good agreement with the analytical static solution [4, 5, 8]. 
This study is devoted to the problem for an interface crack under harmonic 
external loading taking the opposite crack faces contact interaction into account. 
The system of boundary integral equations, derived in [10], is modified in order to 
increase the stability and the accuracy of the solution, and decrease the 
computation time. The numerical solution is obtained for the normally incident 
tension-compression wave. The distribution of the displacements and tractions at 
the bimaterial interface and the surface of the crack are analysed for the normally 
incident tension-compression wave. The dynamic stress intensity factors (opening 
and shear modes) are also computed as functions of the frequency of the incident 
wave and properties of the upper and the lower half-spaces. The results are 
compared with those obtained neglecting the contact interaction. 
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2 Problem statement 
 
Let us consider a crack located at the bimaterial interface under external dynamic 
loading. For this purpose, we investigate an unbounded elastic solid which 
consists of two dissimilar homogeneous isotropic half-spaces )1(Ω  and )2(Ω . The 
interface between the half-spaces, *Γ , acts as the boundary )1(Γ  for the upper 
half-space, and the boundary )2(Γ  for the lower half-space. The boundaries )1(Γ  
and )2(Γ  differ by the opposite orientation of their outer normal vectors. 
Henceforth, the superscript (1) refers to the upper half-space and the superscript 
(2) refers to the lower half-space. We assume that surfaces )(mΓ  ( 2,1=m ) consist 
of the infinite parts *)(mΓ , which form the bonding interface *Γ , and the finite 
parts cr)(mΓ , which form the crack surface crΓ , see Fig. 1. 
 

 
 

Figure 1. An interface crack between two half-spaces 
 

In the absence of body forces, the stress-strain state of both domains is defined by 
the dynamic equations of the linear elasticity for the displacement vector 

),()( tm xu  (the Lamé equations) 
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where ∆  is the Laplace operator, )(mλ and )(mµ  are the Lamé elastic constants, 

)(mρ  is the specific material density.   
 
It was assumed that there are no initial displacements of the points of the body, in 
other words the body is strainless at the initial moment. The following conditions 
of continuity for displacements and stresses are satisfied at the bonding interface: 
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where the known traction vectors on the crack surface, caused by  the external 
loading, are given as 
 

T.,),,(),(),,(),( )()2()2()1()1( ∈Γ∈== ttttt crmxxgxpxgxp  
 
The Sommerfeld radiation-type condition, which provides a finite elastic energy 
of an infinite body, is also imposed at infinity on the vector of displacements.      
 
3 Integral equations 

 
The components of displacement field in the upper and lower half-spaces )(mΩ in 
terms of boundary displacements and tractions can be represented using the 
Somigliano dynamic identity [1–3, 10, 13, 14]: 
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where x  is the point of observation and y  is the point of loading. Here the 
integral kernel ),()( τ−tU m

ij yx,  is the Green fundamental displacement tensor [1–

3]. The integral kernel ),()( τ−tW m
ij yx,  can be obtained from ),()( τ−tU m

ij yx,  by 
applying the following differential operator [1, 14] : 
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Applying the differential operator (4) to the Somigliano dynamic identity (3) we 
obtain the components of the traction vector in terms of boundary displacements 
and tractions for both half-spaces: 
 

.T,

,dd)),,(),(),,(),((),(

)(

)()()()()(

)(

∈Ω∈

−−−= ∫ ∫
Γ

t

tFyutyxKptp

m

T

m
ij

m
i

m
ij

m
i

m
j

m

x

yyxyx τττττ
  (5) 

 
For the limiting case )(mΓ→x , taking into account the assumed relatively smooth 
distribution of traction on regular surfaces )1(Γ  and )2(Γ , the following 
representation of the traction vector at the interface can be obtained from Eq. (5): 
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where )(mΓ∈x , Τ∈t . 
 
Finally, the system of boundary integral equations takes the form: 
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We also introduced the new variables, ),(* tui x  and ),(* tpi x : 
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Note that in the present study the form of the resulting boundary integral 
equations system (7)–(10) differs significantly from the corresponding integral 
system in [9–11]. The resulting system of boundary integral equations becomes 
simpler, it does not contain integral kernels ),()( τ−tU m

ij yx,  and ),()( τ−tW m
ij yx, . 

The further algebraic manipulations (i.e. summation and subtraction of the 
corresponding integral equations) are also unnecessary, therefore the system of 
boundary integral equations does not contain residuals of all integral kernels and 



 

the corresponding matrix of linear algebraic equations becomes sparser. For 
example, in the case of the collocation method with a piecewise continuous 
approximation used in this study, the number of non-zero elements of the matrix 
of linear algebraic equations decreases by )1(8 −inout NN  in 2D case and by 

outinout NNN 1216 −  in 3D case, where outN  and inN  are the numbers of boundary 
elements located on the bonding interface and crack surface respectively. 
Consequently the total number of integrals over boundary elements, required to be 
computed in order to solve the problem, decreases even further, by 

)(16 outinout NNN +  in 2D case and by )(36 outinout NNN +  in 3D case, which 
results in the significant acceleration of the numerical solution of the problem. On 
average, the solution time decreases by 40–50%. The stability of the obtained 
solution also increases, especially for the higher frequencies of external loading 
and for the cases with considerable difference between mechanical properties of 
adjoining half-spaces. 
 
For the case of harmonic loading with the frequency T/2πω = , which is 
considered in the paper, tractions and displacements are harmonic functions and 
can be presented as follows: 
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Then the system of boundary integral equations (7)–(10) can be rewritten as: 
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The integral kernels ),()( ωyx,m

ijW , ),()( ωyx,m
ijK  and ),()( ωyx,m

ijF  are obtained 
from the fundamental Green tensor by applying the differential operator (4). Note 
that due to the presence of non-integrable singularities in the integral 
kernels ),,()( ωyxm

ijF , whose rank exceeds the dimension of the integration region, 
the corresponding hypersingular integrals of the system of boundary integral 
equations (11)–(14) are treated in the sense of the Hadamard finite part [14, 15, 
16]. 
 
4 Contact interaction of crack faces 
 
In reality, under dynamic loading the opposite crack faces interact with each 
other, significantly changing the stress and strain fields near the crack tips. 
However, since the area of interest is hidden in the solid, the direct observation 
and measurement of the contact characteristics is impossible. The nature of the 
contact interaction between two opposite crack surfaces is very complex. Under 
deformation of the material, the contact area changes in time. It is unknown 
beforehand and must be determined as a part of solution. The complexity of the 
problem is further compounded by the fact that the contact behaviour is very 
sensitive to the material properties of two contacting surface, their textures and 
topologies, frequency, magnitude and direction of the external loading in relation 
to the contact [13]. Taking these effects into account will make the contact crack 
problem highly non-linear. Thus considering the crack closure effect is the natural 
next stage of this research. 
 
Under the external dynamic loading the opposite crack faces move with respect to 
each other and the corresponding displacement is given by the discontinuity 
vector ),(),(),( )2()1( ttt xuxuxu −=∆ . The contact interaction results in the 
appearance of the contact force ),( txq  in the contact region. 
 
In order to include contact interaction into consideration, the Signorini constraints 
must be imposed for the normal components of the contact force and the 
displacement discontinuity vectors  
 

];0[,,0),(),(,0),(,0),( Tttqtutqtu nnnn ∈Ω∈=∆≥≥∆ xxxxx . (15) 
 
The constraints ensure that there is no interpenetration of the opposite crack faces 
(the first constraint in Eq. (15)); the contact force is unilateral (the second 



 

constraint in Eq. (15)); and the contact forces are absent if there is a non-zero 
opening of the crack (the third constraint in Eq. (15)). 
 
Additionally we assume that the interaction satisfies the Coulomb friction law: 
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where τk  is the friction coefficient. The Eq. (16) means that the opposite crack 
faces remain immovable with respect to each other in the tangential plane as long 
as they are held by the friction force. However, as soon as the magnitude of the 
tangential contact forces reaches a certain limit, depending on the friction 
coefficient and the normal contact forces (see Eq. (17)), the crack faces begin to 
slip.  
 
If the contact interaction of crack faces is taken into account, the resulting process 
is a steady-state periodic process, but not a harmonic one. As a result, components 
of the stress-strain state cannot be represented as a function of coordinates 
multiplied by an exponential function. According to [15], all components of 
solution can be expanded into the Fourier series 
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where Tkk /2πω = , and Fourier coefficients are given as 
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The considered contact problem is non-linear and requires an iterative solution 
procedure. During the iterative process, the Fourier coefficients will change from 
one iterative step to the next until the distribution of the displacements and 
contact force vectors satisfying the constraints (15) – (17) will be found. 
 
5 Numerical results 
 
The piecewise-constant approximation of the known and unknown functions was 
used to solve the problem numerically [11–13]. Note that the solution is 
symmetric with respect to the centre of the crack and the Sommerfeld radiation-
type condition (3) is satisfied at the infinity, i.e. the displacements at the interface 
decrease gradually with increase in the distance to the crack. 
 



 

As a numerical example let us consider a linear crack with length of 2R under the 
normally incident time-harmonic tension-compression wave of the unit intensity. 
The properties of bimaterial are: GPa207E(1) = , GPa70E(2) = ; 25.0)1( =ν , 

35.0)2( =ν ; 3)1( mkg7800=ρ , 3)2( mkg2700=ρ . On Figure 2 – 4 the normal 
displacements and contact forces are given at the crack surface for 1.0)1(

2 =Rk .  
   

 
     

Figure 2. Normal displacements neglecting the contact interaction  
 

 
 

Figure 3. Normal displacements taking the contact interaction into account  
 



 

 
 

Figure 4. Normal contact forces at the crack surface 
 
It is obvious that the contact interaction of crack faces changes the solution both 
quantitatively and qualitatively. The unilateral Signorini constraints (15) are 
satisfied on the surface of the crack during the period of oscillation. There is no 
interpenetration of the opposite crack faces and normal contact forces are 
unilateral. With the rise in the wave number the distribution of forces and 
displacements become much more complicated. A similar situation is observed 
for shear components of the solution. 
 
Note that contact forces were normalized by the stress amplitude of the incident 
wave, 0p ; and displacements were normalized by the factor 00 /2 Rpµ , where 0µ  
was specified as follows [8]: 
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