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ABSTRACT
A strain gradient constitutive model is applied to crack analysis with the finite element simulation, and the
size effect is examined on the stress concentration around crack tips.  Governing equations involving the
second gradient terms are derived, and a complete form of the strain gradient material model is developed
within the framework of infinitesimal deformation theory.  Here we employ a third order tensor, i.e. the
second gradient of displacement, as a kinematic variable so that another third order tensor called “hyper-
stress” appears in the equilibrium equation.  And additional boundary conditions are also prescribed in terms
of the gradient of displacement and couple stress.  Such a treatment makes the problem statement much
more complicated, compared with the conventional type boundary value problems.  In contrast to the
conventional first grade material model, however, the second gradient term enables us to describe the explicit
size dependence of the mechanical response.  The generalized variational principle called “Hellinger-
Reissner principle” is applied to the mixed-type finite element stiffness equation, in which the displacement,
the strain, and the second gradient of displacement as well are variants.  The second part deals with the
numerical simulation.  The stress-strain concentration is examined, and the emphasis is placed on the
explicit scale dependence of the objective domain.  And the stress relaxation behavior near the crack tip is,
in general, observed for smaller crack, although the tendency of the relaxation depends on the mode of cracks.
The energy release rate calculated through the conventional J-integral is no more path-independent for such
scale dependent crack problems.

1 INTRODUCTION
Non-simple materials with higher gradient terms have a specific feature such that the materials
reveal the explicit size dependence on the mechanical response, in which the second grade material
model is a typical one.  The second grade material model has a long history from 60’s, for
example by a pioneering work by Mindlin[1].  The studies were more or less theoretical
extensions of the simple material model and pointed out the explicit size dependence of the
objective domain.  The higher order effect has recently been renovated by several researchers
such as Aifantis[2], Fleck and Hutchinson[3] from the view of size effect in the phenomenological
plasticity.  However, we meet a difficulty with the continuity of interpolation functions, when
solving boundary value problems within a modern manner by the finite element method.  This is
generally overcome by introducing the Lagranigian multiplier, e.g. Shu and Fleck[4] and
Amanatidou et al.[5], in the vriational formulation, although the physical evidence may be lost.

A novel methodology of stress analysis is proposed for second-grade materials in the preent
investigation.  Governing equations for the second grade materials are derived from the virtual
work principle, and a complete set of constitutive model is formulated, in which the second
gradient of displacement is involved as an independent variable.  The generalized variational
principle is applied to the derivation of the finite element formulation.  The displacement, strain
and second gradient of the displacement are regarded as variants, with which a mixed-type finite
element is obtained.  The scale effect due to the gradient theory is examined in the second part.
Crack analyses are carried out, where we discuss the driving force for the cracking.  When a



crack is smaller, i.e. the objective domain becomes smaller, the second gradient effect must not be
negligible.  We also discuss the path dependence and independence of the energy release rate
represented by J-integral

2 GOVERNING EQUATIONS
2.1 Balance equation and boundary conditions
The strain energy function W is expressible in terms of the first grade gradient of displacement ui,
i.e. strain eij, as well as the second grade gradient hijk as W(eij, hijk).  The second gradient variable
is defined by
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Several definitions for the second grade variable hijk are possible and then another material model
can also be developed, e.g. Georgiadis[6].  Here we assume that both eij and hijk are quite small.

Following the virtual work principle by which the internal work by the virtual displacement
field is related to the external work, we have
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Here we limit our discussion to the static case without body force nor body couple.  The symbols
dui and     

† 

d(∂ui /∂n)  in the right hand side represent the virtual displacement and the virtual normal
gradient of displacement.  Then we have the balance equation and the boundary conditions for
the second grade material model:
Balance equation;
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Surface force boundary on a part of surface St;
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Prescribed displacement boundary on the complementary surface Su;
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Couple force boundary on a part of surface Sr;
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Prescribed normal displacement gradient boundary on Se;
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The symbol Di(.) stands for the differential operator in tangential direction on the boundary.  At
first sight the governing equations are much more complicated than those in conventional model.
Notice that additional boundary conditions are prescribed when we meet a corner in the objective
domain, although we neglect the effect for simplicity.

2.2 Strain gradient material model
In order to complete the governing equations, we define the constitutive equations for the stress sij

and the hyper-stress tijk.  We simply assume that they are linear on the variables eij and hijk,
respectively and that the material is isotropic.  The linear elasticity equation, well-known as



Hooke’s law, for the first grade material model, is expressed by
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where l and m are Lame’s constants in the infinitesimal linear elasticity model.  In contrast the
second term is purely related to the second gradient of displacement, and the third order tensor so-
called ‘hyper-stress’ is also reduced from the representation theorem for isotropic tensors to
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Here we have five material constants a1 through a5.  
When eqns (8) and (9) are substituted into eqn (3) and the kinematic variables are expressed

by displacement, we have the following balance law;
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Here we introduce a new scale parameter l governing the size effect.  When we regard
l2(4a1+2a2+2a5)=l+m and l2 (a3+a4)=m, this will provide a hint to specify the material parameters
for the second grade material.  However, there are too many parameters to identify a unique set of
the parameters.  For the moment we set these parameters as E=2.0x105, n=0.3, a1=2.308x104,
a2=1.923x104, a3=1.538x104, a4=6.154x104, and a5=3.077x104 for the scale parameter l=1, where
Young’s modulus E and Poisson’s ratio n have the well-known relationships E= m(3l+ 2m)/ (m +l)
and n = l /2(m + l).

3 FINITE ELEMENT FORMULATION
The Hellinger-Reissner (H-R) principle states that either stress or strain can be eliminated from the
Hu-Washizu (H-W) principle, in which all the variables such as displacement, strain, force, and
stress are variants.  The H-R principle is achieved by the substitution of stress-strain relationship
into the H-W principle, and therefore the displacement and the strain are now variants in the
present investigation.  The virtual work principle is rewritten, without loss of generality, as
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Here we introduce a new variable xij as the first gradient of displacement　    

† 

x ik = ∂ui /∂xk .  In
practice the variable xij is expressed by way of strain eij in the finite element equation, and so we
just use the symbol as eij.

In the variational equation, we have the displacement, the strain and the second gradient of
displacement as basic variants.  In such a case the choice of the order in the interpolation function
is important under the mixed type finite element method.  One of the possible and simple choice
for the two dimensional case is as follows; the second gradient of displacement is constant in the
element, the strain is interpolated by a three-node linear element, and the displacement is



composed of four-node so-called “bubble” element.  Let these variables be expressed by matrix
form as
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{h} = [L]{hl} ,   {e} = [M ]{e m} ,   {u} = [N ]{un}  .          (12)
In the finite element scheme, the first order derivative of the variables are permissible, and so we
can also write the strain in terms of displacement and the second gradient of displacement with
strain as
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The second relation is used for the gradient operator on xij.  Using these relationships and
expressing eqn (11) with matrix form, the final equations for the finite element stiffness takes the
form of
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4 NUMERICAL RESULTS AND DISCUSSIONS
A CT-type specimen is employed for the mode-I, -II and -III crack analysis.  Figure 1 shows the
finite element mesh division employed in the simulation where the total number of elements is
2376 and the number of nodes is 3621.  We cover the entire domain for the analysis.  Figure
1(b) and 1(c) means the magnified region around the crack tip.  Here we use the parameter a/l to
compare the size of the domain, in which a indicates the crack length under l=1.  The dotted line
in the figure implies the path calculated in the J-integral evaluation.

(a) Entire domain      (b) Magnified      (c) Crack tip
Figure 1 Finite element mesh employed in the simulation.

J-int path (a) J-int path (b)

 crack



The axial strain distribution for mode-I crack is shown in Fig. 2 for the normal scale of  a/l =1.0
and in Fig. 3 for the small size scale of a/l =1/1000.  The right side of the figures stands for the
strain just around the crack tip.  The strain levels far from the crack are similar in both cases
while the strain distribution is quite different at the crack tip.  In particular the strain for the small
domain in Fig. 3 is relaxed and the strain level is much smaller than the analysis for the normal
scale, i.e. conventional analysis, in Fig. 2.  The stress singularity is observed in the conventional
crack problem and this kind of singularity, or irregularity, is also predicted in the small size
analysis.  However the quality of the singularity, i.e. the order of singularity, seems to be different
from each other.  The analyses for mode-II and –III cracks are also carried out, which comprise a
shear of in-plane and out-of-plane deformation.  We found that the stress/strain relaxation is also
observed for the small object.  In these cases, however, the disturbance in stress arising from the
size effect is not so remarkable compared with the mode-I crack analysis.

The J-integral decreases with the decreasing size while an opposite tendency is observed in
the energy release rate via stress intensity factor.  When the object size is smaller, the second
gradient term becomes dominant and the hyper-stress appears markedly.  It implies that the strain
energy is distributed into the second gradient term around the crack tip and that the J-integral
composed only of first gradient underestimates the energy release rate.

          (a) Whole domain eyy % (b) Near crack tip eyy %  (c) Near crack tip hyyy [1/mm]
Figure 2  Strain distribution for the normal scale a/l=1.

         (a) Whole domain eyy % (b) Near crack tip eyy %  (c) Near crack tip hyyy [1/mm]
Figure 3  Strain distribution for the normal scale a/l=1/1000.



5 CONCLUSION
A second grade material model is applied to the finite element method, and the mechanical
responses in crack problem are discussed.  We have the following results:
(1) A rational formulation with a mixed type finite element technique is obtained, in which the
Hellinger-Reissner principle is applied.  The strain and the second gradient, as well as the
displacement, are basic variants.
(2) The explicit size effect can be predicted by the second gradient material model.  In particular
the stress/strain relaxation is predicted for smaller domain, because the energy is distributed for the
higher grade term in the small object.
(3) The conventional energy release rate such as J-integral must be modified to evaluate the real
energy contributed to the crack intensity.
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