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ABSTRACT

The tip region of a fluid-driven fracture is governed not only by the square-root tip asymptote,
well-known from linear elastic fracture mechanics (LEFM), but also by an intermediate asymptotic
solution which comprises a tip asymptote specific to fluid-driven fracture. These tip asymptotics
were explored in the laboratory by growing hydraulic fractures in impermeable, transparent, brittle
elastic materials, employing a method based on the Beer-Lambert law of optical absorption to
measure the full-field fracture opening from the intensity of light transmitted through the growing
fractures. It was found that a power-law of the distance from the crack tip fit the opening data well
over the outer 30 to 40 percent of the fracture. This power law was found to approximately match the
fluid-driven fracture tip asymptote when the effect of fluid viscosity, quantified by a dimensionless
parameter, was significant. Conversely, the LEFM tip asymptote approximated the experimental
behavior when the effect of viscosity was negligible. These results give the first direct experimental
evidence for the existence of the fluid-driven fracture tip solution. However, the implications will be
fully understood only when solutions are developed which consider more general cases, specifically
in the case with large fluid lag and the case of a fracture parallel to a nearby free surface.

1 INTRODUCTION
This paper presents experimental results regarding the nature of crack-tip asymptotics for
a fluid-driven fracture in an impermeable elastic medium. Linear elastic fracture mechanics
(LEFM) gives the following asymptotic form for crack-tip opening (Rice [1])
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where KIc is the fracture toughness, E′ is the plane strain modulus, x is the distance from
the crack tip, and R is the fracture radius (or half-length). However, when the fracture is
driven by a power-law fluid, the coupling between linear elasticity and lubrication theory
leads under certain conditions to an intermediate asymptotic tip solution which is peculiar
to hydraulic fracture (Desroches et al. [2], Garagash and Detournay [3]). For the simplest
case of a Newtonian fluid with viscosity µ, this asymptotic form is given by
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where Rf is the radius of the fluid-filled region. This is a modification of published analyses,
which assume that the size of the fluid lag - the region between the fluid-filled region and
fracture front - is negligible (Rf/R ≈ 1). This asymptotic behavior is a direct consequence of
the mathematical model, a fact that was reported even before it was specifically attributed to
an intermediate asymptotic solution (Spence and Sharpe [4], Lister [5]). Furthermore, con-
sideration of this crack-tip behavior is fundamental to a number of recent contributions (e.g.



Savitski and Detournay [6], Adachi [7]), however, to date there has been no experimental
evidence to support it.

In the following we present experiments in which full-field fracture opening is measured
and the data related to the asymptotic forms (eqns 1 and 2). Both asymptotes are observed
and it is shown that dominance of one asymptote over the other is related to the value of a
parameter which has the interpretation of a dimensionless viscosity.

2 CHARACTERISTIC TIMESCALES
Letting 〈Q〉 be the mean injection rate up to time t, it may be shown from scaling laws
derived from the governing equations (linear elasticity, lubrication theory, and fluid volume
balance) that the penny-shaped fracture in an impermeable elastic solid evolves in a single
dimensionless parameter (Savitski and Detournay [6])
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which may be interpreted as a dimensionless viscosity. Hence, at early time the effective
viscosity is significant, resulting in strong coupling between the fluid and solid mechanics.
Along with this strong coupling comes the potential for large fluid pressure gradients to exist
and the possibility of developing substantial fluid lag (Garagash [8]). The problem evolves
relative to the characteristic time tmk to a regime where the fluid/solid coupling becomes
weak (toughness-dominated), and in the limit vanishes (zero-viscosity). Therefore at large
time the pressure gradient and fluid lag vanish, as does the intermediate asymptotic solution
(eqn 2).

Hydraulic fractures growing parallel to a nearby free-surface evolve on a second timescale
related to the growth of the fracture length with respect to the fracture depth H. For the
penny-shaped fracture this timescale is given by (Bunger and Detournay [9])

tkk̄ =
KIcH

5/2
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Thus near-surface hydraulic fracture in an impermeable solid evolves on two timescales, and
in fact, it may be shown that the fracture is uniquely characterized by the ratio (Bunger
and Detournay [10])
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Provided that the fractures grow only to some multiple of the depth that is of order one,
timescale tkk̄ gives the order of magnitude of the time required for a particular fracture to
grow. It follows directly that limiting regimes of fracture exist, for example, if M̄k ¿ 1, the
fracture grows almost entirely in an essentially uncoupled regime where fluid viscosity plays
no significant role (Detournay [11]).

3 EXPERIMENTAL METHOD
We have developed experiments to explore these regimes of fracture propagation. One series
of tests, performed in Polymethylmethacrylate (PMMA) (E′ = 3900 MPa, KIc = 1.4 MPa
m1/2), was designed such that M̄k ¿ 1. A second series, designed such that M̄k = O(1),
was performed in borosilicate glass (E′ = 65000 MPa, KIc = 0.7 MPa m1/2). Fractures were



Figure 1: Sketch of experimental setup.

driven by aqueous glycerin, a Newtonian fluid with a viscosity which may be easily varied
from 0.001 to 2.5 Pa·s depending on water content and temperature. Initiation occurred
from a pre-existing manufactured flaw with initial radius of 10 mm and initial depth of 12
to 15 mm.

Injection fluids contained a proportion of aqueous blue dye, and a video camera recorded
the intensity of light transmitted through the growing fracture from a back-light source
(Figure 1). In this way, opening was determined from the optical absorbance A of the
fluid-filled portion of the fracture according to the well-known Beer-Lambert law

A ≡ log
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I
=

w

k
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where k is a constant determined by calibrating with fluid-filled wedges. Additionally,
pressure was measured using analog transducers, injection rate was estimated from pressure
drop across a needle-type flow control valve, surface displacement at the fracture center was
measured using an linear variable differential transformer (LVDT), and fracture radius R
and fluid radius Rf were determined directly from video images of the growing fracture.

4 ANALYSIS AND DISCUSSION
Intensity (grayscale) images were captured from the video of each test. An example is shown
in Figure 2 for a case where fluid lag is easily observed. For each image, eqn (6) was used
to compute the average value of the opening, sampled along 15-20 radial lines. The effect
of the viscosity parameter on the crack tip opening is shown in Figure 3. In the first, small
viscosity case, the opening follows closely with eqn (1). Conversely, in the second case eqn
(2) closely approximates fracture opening.

The power-law model

w = Cξα, ξ =
x

R
, (7)

was fit to the data using a least-squares procedure. Generally, the identification of the co-
efficients C and α used the data over the approximate range 0.3 < ξ < Rf/R; however



Figure 2: Image of growing hydraulic fracture, H = 13 mm, M̄k ≈ 2.

C and α do not appear to be sensitive to the exact choice of data range. Figure 4 shows
two plots corresponding to each of two representative tests. The first plot shows the ex-
ponent α versus the fracture radius to depth ratio. The fluid fraction Rf/R, in the range
0.55 < Rf/R < 1 for the second test, is also shown for reference. The second plot shows the
intensity parameter computed from each experimental data point, Cexp. Plotted with these
values are the intensity parameters from eqns (1) and (2), C1/2 and C2/3 respectively, which
are computed using the material properties and the experimental data for R and Rf . Exam-
ination of Figure 4 along with plots like those in Figure 3 shows that the power law that is
the best fit to the experimental data also coincides with the appropriate tip asymptote (eqn
1 or 2) within 10 to 20 percent throughout fracture propagation. There are two exceptions.
At early time, the influence of the borehole on the stress field and/or the influence of fluid
compressibility on the injection rate may play a significant role. The other exception occurs
for fluid fraction Rf/R less than 0.7, in which case it is probable that there is insufficient
overlap between the fluid-filled region and the tip region for eqn (2) to hold.

5 CONCLUSIONS
These results provide, to the authors’ knowledge, the first direct experimental evidence
supporting the existence of an intermediate asymptotic tip solution associated with the two-
thirds asymptotic behavior. Furthermore, experimental evidence supports the assertion that
this tip asymptote, a result of solid/fluid coupling, vanishes when the effect of the viscosity
becomes small (Garagash [12]). However, the hydraulic fracture solutions (Desroches et
al. [2], Garagash and Detournay [3]) which are shown here to agree with the experimental
data, assume that the size of the fluid lag region is negligible relative to the crack length.
Furthermore, tip asymptotics for near-surface hydraulic fracture are not yet fully understood.
Thus it is not known what tip behavior the mathematical model predicts when there is
significant fluid lag or when the fracture radius is large relative to the fracture depth, so the
implications of these results will be fully understood only when appropriate solutions are
developed.
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Figure 3: Fracture opening versus normalized distance from fracture tip for dimensionless
viscosity parameter M̄k ≈ 0.03 (left) and M̄k ≈ 0.7 (right).
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Figure 4: Results for power and intensity parameters from eqns 1 and 2 where M̄k ≈ 0.03
- no lag (top) and M̄k ≈ 0.7 (bottom).
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