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ABSTRACT 

A special finite element based on the complex potential theory and hybrid variational principle is proposed 

for analyzing mechanical-electrical coupling field of piezoelectric materials containing an elliptical hole. In 

the formulation, the complex series solutions satisfying the equilibrium equations and compatibility equations 

are chosen as the displacement and stress fields in the element domain. The series solutions satisfy exactly the 

D-P condition in advance. While the displacements along the element outer boundaries vary parabolically for 

an eight-node special element. The element stiffness matrix is then obtained by using the Gauss quadrature 

method. Numerical examples verify the accuracy and efficiency of the proposed element. It is found that the 

relationships between the logarithm concentration factor of tangential ( ) stress, electrical 

displacement, and electrical field at the notch tip and logarithm are linear.  
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1. INTRODUCTION 

PZT materials are widely used as sensors/actuators in smart structural technology due to their fast 
response and low energy consumption. There are a lot of articles dealing with the damages (cracks) 
as well as inclusions of PZT material itself by using analytical approaches. Details may be found 
in a review paper written by Chen and Yu [1]. Since analytical methods can be only used to obtain 
solutions for simple cases, numerical methods, such as the finite element method, boundary 
element method, and/or the coupled FEM-BEM, should be resorted for obtaining solutions in 
general complicated cases. Various conventional finite elements for modeling of piezoelectric 
materials and smart structures are summarized by Benjeddou [2].  

It is costly to model a crack or hole by using ordinary finite elements [3]. While special 
elements employing hybrid formulations have been succeeded for analyzing crack problems [4-5], 
and anisotropic plates with an elliptical hole [6-7]. Recently, the special element for ordinary 
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materials has been extended to piezoelectric materials for computing edge singularities [8].  
In this paper, the special hybrid element with an elliptical hole in reference [6-7] is extended to 
piezoelectric materials. Complex potential theory and hybrid variational principle [4,5,9] are used 
to develop the special element. Numerical examples with known analytical solutions are 
performed to demonstrate the accuracy and efficiency of the proposed elements. It is shown that 
accurate results around the hole-boundary can be obtained by using only one special element. It is 
also found that the relationships between the logarithm concentration factor of tangential stress, 
electrical displacement, and electrical field at the notch tip ( ) and logarithm are fairly 
linear under simple far-field loadings. 

ab /0=θ

2. REISSNER’S VARIATIONAL PINCIPLE 
If the governing differential equations and compatibility equations be satisfied in an element 
domain. The functional for PZT materials can be simplified as  
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where are the displacement vector, stress tensor, electric potential, and electric 
displacement vector, respectively. The quantities with symbol 

i  iu ,
~  represent the known quantity. 

And  represents the boundary with given tractions, and the normal component of the 
electric displacement.  

 S , Sσ ω
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It has been proved that the stress, displacement and electrical fields can be expressed by 

three complex functions, ( )  (k k kφ ξ =  if the complex variable formulation is employed, 
namely, 
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In Eq. (2), the symbol Re represents the real part of a complex function and  
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where and are the semi-axes of the elliptical hole, and are defined as 
kz x=                                  (4) 
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The complex variable (k=1,2,3) is the roots of the following equation: k
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The explanation for undefined symbols and detailed derivations may be found in [10-12]. 

Generally speaking, it is impossible to find closed form solutions for for arbitrary 
boundary conditions. Therefore, a finite series formulation is adopted herein in developing the 
special element, namely, 
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where are complex coefficients defined by j j j
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Without loss of the generality, set  equal M N . Since terms with in Eq. (6) contribute 
no stresses and electric displacements, thus are discarded in the formulations.  
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For the D-P condition (traction-free and charge-free) along the cavity boundary, one has 
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Equation (8) is to be used to satisfy the boundary conditions on the elliptical hole boundary 
in advance, thus, the total number of independent coefficients in Eq. (6) is reduced to half. Using 
Eqs. (2), (3), (6), and (8), the displacement, stress, and electrical fields in the element 
domain, , and traction  on the element boundary can be symbolically expressed as u ,i ij i

,                = βσ ,         = =σ βNS
β
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where vector contains only the independent variables since Eq. (8) has been used. For example, 
if , one has 
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The external boundary displacement vector and electric potential, u , is independently 
assumed in terms of the nodal displacements and electric potentials, namely, 



u L= δ                                                                      (11) 
where elements of matrix L are the interpolation functions defined only along the element outer 
boundary, and elements of vector δ  are the nodal displacement and electric potential. To be 
jointed with special or conventional elements, the interpolation functions for the special element 
developed herein are chosen to be displacement shape functions of the adjacent conventional 
elements.  

Following the common procedures in [4-5], the stiffness matrix is derived as 
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Detailed formulations may be referred to reference [12]. 

3. EIGHT-NODE SPECIAL ELEMENT 
Various special elements containing an elliptical hole with differential nodes can be formulated. As 
an example, an eight-node special element, schematically shown in Fig. 1, is considered. Each 
node has three degrees of freedom (DOFs), e.g., 1ϕ  at node 1. The poling direction is 
assumed in the y-direction. The lengths of the semi axes of the hole are and b  and . 
It can be seen that there are totally 24 unknowns in the  matrix and the number of unknowns is 
equal to the number of the degrees of freedoms of the element, satisfying the requirement for 
formulations of hybrid elements. 
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The shape functions are chosen in parabolic forms, namely,  
 N            (14) 1 2 3(s 1)(2s 1);  N 4s(1 s);   N s(2s 1)    s= − − = − = − [0,1]∈
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where , is the arc variable along the element outer side, and is the length of the 
element side ij . It should be pointed out that linear forms could also be used. 

s =

4. NUMERICAL EXAMPLES 

A computer program is written. Various examples have been studied to test the proposed element. 
The material is assumed a PZT-4 ceramic and the reduced material constants in [10] are used in the 
analyses. Set H=W=50mm and a / = to simulate the infinite piezoelectric medium. Due to 
space limitations, only a few examples and results obtained by using one special element are listed 
below. 

Example 1 Consider an infinite piezoelectric medium with a circular hole ( a ) subjected 
to far field electrical loading, . The finite element results for the electric fields of and 

normalized with respect to  are shown in Fig. 2 (symbols). It can be seen that numerical 
data agree well with analytical results (solid lines) [10, 3]. To achieve the same accuracy, 960 
eight-node ordinary parametric elements are needed to model a quarter of the plates [3]. It is 
obvious that the computational efficiency is high for the proposed finite element in this case. Since 
the analytical data in [10] is incorrect, the data in Fig. 2 are recalculated. 
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Fig. 1 An eight-node special element Fig. 2 Variations of and with  rE Eθ θ

2a
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Example 2 Consider an infinite piezoelectric medium with a center crack of length  
( b ) under combined mechanical and electrical loadings, namely, 2 0σ = σ and . To 
present the results and compare with analytical solutions, the polar coordinate system with the  

2 0D=
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origin at the crack-tip is introduced. Define 2 2/∞ ∞= σ  and 
2

2θ
∞

σ
σ

r
a θσ

6 1 mm

σ = , where is the  

stress computed at  in 40−r = × θ direction. The finite element results for stress are 
shown in Fig. 3 (symbols) with three different values of ( 5 1

σ
85 1k 8 80 ,  10 ,  0− − −×

2 2k D /

× − ). It can be 
seen that all numerical results are well compared with the analytical solutions, recalculated herein 
due to the incorrectness of the numerical data present in [11]. 

  
Fig. 3 Stress distributions around the crack tip

 under combined loadings ( )
Fig. 4 Double Logarithm plot of Kds with  
 ∞ ∞= σ
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Example 3 Consider piezoelectric rectangular plates with a central elliptical cavity. The 
plate is subjected to either far field mechanical loadingσ  or electric loading . To investigate 0D
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the concentration of stress and electrical quantities in the tangential direction at with 
varying ratios, set and change so that the ratio ranging from 1 to 0.0001. In 
other words, a circular hole approaches a crack gradually.  Figure 4 shows the finite element data 
of  (symbols) for the case of far field mechanical loading. Define the concentration factors of 
tangential electrical displacement at 
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= × . It is found that the relationships between logarithm  and the 
logarithm of ratio are linear for all three factors, described by  
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Similar linear relationships are also found for other mechanical and electrical quantities and 
loadings.   

5. CONCLUSIONS 
Special element containing an elliptical hole is developed for stress and electric field analysis of 
piezoelectric plates with defects. Numerical examples are performed to demonstrate the efficiency 
and accuracy of the proposed element. For finite plates containing an elliptical hole under 
mechanical or electrical loadings, it is found that the relationship between the logarithm 
concentration factor of tangential stress, electrical displacement, and electrical field at , 0x a y= =  
and logarithm ratios is fairly linear.  
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