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ABSTRACT 

In marine applications, sandwich structures can be subjected to underwater explosions or explosions in air.  
Generally, those structures consist of curved panels with cellular cores.  Explosions result in high-pressure pulses 
that decay rapidly so that the duration of the loading is much shorter than the fundamental natural frequency of the 
panel.  Because of the core is generally a cellular material (foam, honeycomb, balsa) that is relatively soft compa-
red to the facings, the dynamic response consists of two phases.  Initially waves propagate through the thickness 
and the deformation is essentially the deformation of the core.  In a second phase, the overall deflection of the 
panel takes place.  This study presents mathematical models for analyzing both phases of the deformation. 

 
 

1 INTRODUCTION 
Weight reduction in ships is very important since it leads to increased payload, speed, and range, 
as well as a reduction in fuel requirements.  There are additional benefits to reducing topside 
weight of ship structure, such as increasing the sea-keeping ability of the ship via improved 
stability. Composites have been used on hulls shorter than 200 feet long with great success. In 
addition to reducing weight, they also offer the capability of integrating absorbing and reflecting 
materials into topside structures to reduce the electromagnetic signature of a ship.  Composite hull 
forms offer the promise of reduced thermal and acoustic signatures.  Composite structural applica-
tions are now transitioning into the fleet. 

High pressures of short durations applied during explosions can introduce significant permanent 
deformations and damage to the core of sandwich structures with composite facings.  In addition, the 
core/ facing interfaces, and the facings themselves can be damaged.  In addition, because duration of 
the loading is so short the deformation of the sandwich structure usually consists of two phases.  
During the first phase stress waves propagate through the thickness of the plate and cause significant 
deformation of the core.  It is then followed by a second phase dominated by the overall bending 
deflection of the structure.  The overall objective of this study is to develop models capable of 
analyzing the response of the typical marine sandwich structures to explosions. 
 

2  EQUATIONS OF MOTION FOR CIRCULAR CYLINDRICAL SHELLS 
Soedel [1] extended the Donnell-Mushtari-Vlasov approach originally proposed for homogeneous and 
isotropic shells to laminated orthotropic cylindrical shells.  Obviously, a number of complicating 
effects starting with shear deformations, rotary inertia and details of the kinematics of the deformation 
are not included in that approach.  However, its simplicity and applicability to a wide range of 
problems is attractive in this first attempt to model the transient response of cylindrical panels to 
explosions.  More advanced theories have been developed by many authors starting with Soedel [2] 
and a comparison of a number of theories was performed by Soldatos [3]. 

The motion of a cylindrical shell of radius R, in terms of the transverse displacement w and the 
stress function is governed by two coupled partial differential equations φ
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where the Aij and Dij coefficients are defined in the classical lamination theory for composites and ρ is 
the mass per unit area ( for an homogeneous shell).  Note that no extension-shear or bending-
twisting coupling is considered.  That is A

hρ
16=A26=D16=D26=0 

 
3  FREE VIBRATIONS OF SIMPLY SUPPORTED CYLINDRICAL SHELLS 

Closed form solutions for the free vibrations are available for closed cylindrical shells and cylindrical 
panels with simply supported boundary conditions.  These solutions are used to examine the effect of 
curvature on the natural frequencies and on the dynamic response to transient distributed loads. 
 
3.1 Closed simply supported shell 
 
The boundary conditions for a simply supported closed circular shell 
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and the governing equations are satisfied by 
 

        
( ) tsinncos

L
xmsinWw mnmn ωγ−θ
π

=       ( ) tsinncos
L

xmsin mnmn ωγ−θ
π

Φ=φ                       (4) 

 
Substitution into the governing equations (Eq. 1,2) yields  
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The natural frequencies are given by 
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Taking Wmn = 1, the mode shapes are given by 1221mn /αα−=Φ .  
 
3.2 Simply supported cylindrical panel 
 
The boundary conditions for a simply supported closed circular shell 
 

   ( ) ( ) ( ) ( ) 0t,,xwt,0,xwt,,Lwt,,0w =β==θ=θ             (7) 
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and the governing equations are satisfied by 
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The  coefficients in Eq. are now  α
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where is the aspect ratio of the panel.  For a given combination of m and n, we recognize 
the modal stiffness of a flat plate with the same dimensions.  Therefore, in Eq. 6, the first term repre-
sents the natural frequency of the flat plate and the second term represents the effect of the curvature 
of the panel.  For homogeneous isotropic panels, the non-dimensional frequencies 
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Eq. (13) indicates that: (1) as the shell becomes shallow ( )0→β , the effect of curvature vanishes, as 
expected; (2) for higher modes, the first term on the right hand side of Eq. 13 dominates and the effect 
of curvature becomes negligible again.  The evolution of the natural frequencies as m and n increase is 
illustrated in Fig. 1 for square panels ( )β= RL  with either 2/π=β or 12/π=β  .  As indicated by 
Eq. 13, the effect of curvature is significant for modes with low values of n, the circumferential wave 
number and it is more pronounced for deep shells than for shallow shells.  An additional trend 
observed from Fig. 1 but also more clearly from Table 1 is that, for deeper shells, several of the lowest 
modes have very close natural frequencies.  Therefore, by contrast with square plates for which the 
transient response is dominated by the first mode, it is expected that, for shells, several modes will 
participate in the dynamic response. 
 

4  TRANSIENT RESPONSE OF SIMPLY SUPPORTED PANELS TO PRESSURE LOADING 
Using the modal expansion method, the dynamic response of a simply supported panel can be written 
as 
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Figure 1: Non-dimensional natural frequencies of square isotropic homogeneous simply supported 
panels (a) 12/π=β ; b) 2/π=β ) 
 
and the modal response is governed by  
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transient pressure loadings including: (a) q which is often used to represent the pressure ot/t
o ep −=

 
Table 1: First six non-dimensional natural frequencies for square isotropic homogeneous panels 
with   o90,15,0=β
 
  Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

m 1 1 2 2 1 3 
n 1 2 1 2 3 1 

Flat plate 

mnω  2 5 5 8 10 10 
m 1 1 2 2 1 3 
n 1 2 1 2 3 1 

Square panel  o15=β

mnω  4.81555 5.29854 8.61247 9.12189 10.0383 12.7372 
m 1 1 1 2 2 1 Square panel  o90=β
n 3 2 4 3 4 5 



 
mnω  11.2987 11.6466 17.2792 20.7576 22.5974 26.0786 

 
 
caused by underwater explosions and (b) ( ) ot/t

oo et/t1pq α−−=  for explosions in air.  The parameter 
to characterizes the duration of the loading.  Results indicate that, when 5.0t omn <ω , the response 

depends essentially on the impulse applied ( )( )ττ= ∫ dqI  regardless of the shape of the loading.  When 
the duration of the loading is larger than the period for that particular mode of vibration, a totally 
different type of response is obtained in which the amplitude of the response depends on the maximum 
force applied during the loading phase.   
 

5  INITIAL RESPONSE 
The initial phase of the deformation takes place before the overall bending deflections of the panel can 
occur.  Here, two cases of practical interest are considered.  First, we assume that the applied pressure 
is low enough for the core to behave elastically during the entire process.  The propagation of elastic 
waves through the thickness of the laminate is studied using the method of characteristics. In the 
second case, the external pressure is assumed to be sufficiently large to induce crushing of the core 
from the onset.  Other possibilities exist but are not considered here. 
 
5.1 Elastic wave propagation through the thickness 
 
In this example we consider a sandwich plate in which the facings have the following properties: E3= 
9.7 GPa, fρ = 1614 kg/m3, hf = 0.762 mm.  For the honeycomb core: E3= 1.005 GPa, cρ  = 139.22 
kg/m3, and hc= 12.7 mm.  This plate is subjected to a 1 MPa uniform step pressure.  The stress at the 
top-facing/core interface obtained using the method of characteristics can be written as 
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where tf is the travel time trough the facing and H is the Heaviside function.  The reflection and 
transmission coefficients at the interface are ( ) ( )fcfc zz/zzR +−=  and  
respectively.  At the top-facing/core interface, the transverse normal stress increases progressively 
even though a step load is applied (Fig. 2).  An approximate solution is obtained by modeling the top 
facing as a rigid body.  During the first 9.76 

( )fccR zz/z2T +=

sµ , no reflected waves propagating towards the left have 
reached the top facing/core interface.  Therefore, the core provides a resistance that is proportional to 
the particle velocity.  The displacement and the compressive stress at the top facing/core interface 
predicted by this model are 
 




















ρ

−−ρ−= t
h

zexp1h
z
pt

z
pu

ff

c
ff2

c

o

c

o  and 



















ρ

−−= t
h

zexp1puz
ff

c
oc &=T         (17,18) 

 
respectively.  Fig. 2 indicates that Eq. 18 provides a very good approximation for the evolution of 
stress at that point.  With the approximate model, the combination of governing parameters that define 
the ramping up of the stress is defined the time constant cff z/h*t ρ= so that ( )*t/t

o e1pT −−= .  When 



t=3t* the stress T has reached 0.95po.  The exact displacement history at the interface can be obtained 
from Eq.(16) and compared with the prediction by the approximate model (Eq. 17) to show that these 
two solutions are indistinguishable in this case (Fig.2). 
 
5.2 Propagation of shock waves in core 
 
Under compression, the deformation of cellular materials used as core in sandwich structures typically 
consists of three phases: (1) the initial linear elastic phase until a peak stress or a crushing stress level 
is reached; (2) the crushing phase in which deformation proceeds under nearly constant stress; and (3) 
the consolidation phase in which stress increases rapidly with strain.  When the applied pressure is 
sufficiently large to cause core crushing, shock waves propagate through the thickness of the the core 
generating high stresses and damage.  A model is presented to analyze this phase of the deformatikon. 
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Figure 2:  Uniform step pressure on sandwich plate: (a) Stress at the top facing/core interface (red line: 
exact solution, black line: rigid body approximation); (b) Displacement at interface (solid line: 
displacement, dashed line: asymptote) 
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