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Crack-like defect models range from the well-known traction free Griffith-Irwin cracks, Barenblatt cuts
containing small process zones at tips, to cuts subjected to cohesive forces over their entire length. This
last type of defect may be regarded as a weak zone (WZ) in the solid which is normally closed but which
can open progressively under sufficiently large remote external tensile forces. The fact that the WZ begins
to open only when the remote force has reached a certain threshold level distinguishes the WZ from a real
cohesive crack. The adhesive forces can be of very different physical origin - atomic, dislocational, localized
porosity, etc. Healed cracks in glaciers and in the earth’s crust are also WZs. The length of WZs can thus
range from a few nanometers to hundreds of kilometers. It is interesting to investigate the fundamental
behaviour of the WZs during their interaction with other defects. Note that the direct approach using some
cohesive force-opening relationship leads to a complicated problem which is reduced to the solution of a
system of nonlinear singular integral equations in [1]. Another approach was suggested in [2], whereby the
cohesive forces were expressed in a series containing N terms with N free parameters. The free parameters
were determined by imposing physically consistent conditions on the solution.

This paper focuses on two topics. Firstly, guided by the results obtained in [2], a general approach to
examining the behaviour of a WZ embedded in a very asymmetric external tensile stress field is developed
by prescribing a priori the WZ asymmetric opening by a two-parameter basis function which meets all
physical constraints. Secondly, this approach is exemplified on the problem of interaction between a long
interface crack subjected to wedge opening forces and a short collinear WZ. The latter is separated from
the main crack by a small strong microstructural feature of the material (i.e. by a small obstacle). The
key questions that will be addressed are: (i) when does the WZ become the nucleus of a cohesive crack
on its own without linking with the pre-existing long crack, and (ii) when does the WZ force the obstacle
to rupture allowing the pre-existing crack to link with it. The critical applied load levels corresponding to
these limiting situations will be determined.

1. An asymmetric weak zone modelled as a special dislocation

In contrast to the direct method used in [2], we shall take an inverse approach when the WZ is located in an
asymmetric tensile stress field and search for a basis function of asymmetric opening displacement of WZ in
the form

w = w0T
3/2, T = tG(X, η), |η| < 1 (1)

The function G(X, η) depends on the parameter of asymmetry, η, i.e. the distance by which the maximum
of w(X) is displaced from the centre of WZ, X = 0. It is assumed that η > 0, if the maximum is displaced
to the left of centre.

We shall seek the unknown function G(X, η) under the following mathematical constraints which result
from obvious physical and geometrical considerations: (i) it is even with respect to a simultaneous change
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of sign of both variables: G(X, η) = G(−X, −η); (ii) it is normalized such that : T = (−η, η) = 1 ⇐⇒
G(−η, η) = (1− η2)−1; G(X, 0) = 1; (iii) it has a maximum at point X = −η: ∂T/∂X(−η, η) = 0; (iv) it
is bounded at the right tip X = 1 as η → −1 + 0, and (v) 0 < G(1, η) < G(−1, η), when η > 0.

We shall search for a rational function of parameter η as a possible form of G(X, η), taking into account
immediately the first of the five constraints above

G(X, η) =
∞∑

0

Anη2n

ηXBnη2n + Cnη2n

By subjecting this rational function to the remaining four conditions, we obtain first a discrete recursive
system of equations for the coefficients An, Bn, and Cn and then, rather unexpectedly, the following simple
result:

T (X, η) =
1−X2

(1 + η2)(1 + αX)
, α =

2η

1 + η2
. (2)

w0 = w∗ ⇐⇒ σ(−η) = 0. (3)

When η 6= 0, the asymptotic behaviour of (2) over a ”large” neighbourhood of the WZ tips resembles the
expected cusp. In fact, the condition (ii) above was chosen with this requirement in mind.

By prescribing the displacement jump in the form (1) we are actually considering a kind of special dislocation.
The parameter η is determined from the additional condition that the minimum of the cohesive force occurs
at the location of the maximum of the opening displacement w(X), i.e. at X = −η. We also require that
σ(X) and w(X) be positive right up to the instant when the maximum opening displacement of WZ reaches
the critical value w∗ – a material constant. The critical value w∗ establishes a limit on the external applied
stress σ∗.

To complete the statement of the model defect system it is necessary to stipulate another material constant,
namely the threshold value of the nominal (i.e. when WZ is absent) external applied stress σ∞, below which
the WZ cannot open, σth. In practice, we only consider situations where σth < σ∞ < σ∗. In this range, w0

in (3) remains a free parameter as a consequence of a certain indeterminacy inherent to the present model.

2. Interaction between a long interface crack and a collinear short weak zone

The phenomenon of intermittent crack growth has often been observed in structured materials, e.g. in
toughened ceramics [3]. In all likelihood, Broberg [4] was the first to propose a possible explanation for
this phenomenon. The crack front periodically meets a microstructural feature (an obstacle) of enhanced
strength and is arrested by it. Ahead of this obstacle, in the region of normal strength, micro-defects are
formed in time. These alter the local stress field and cause a stress concentration on the obstacle which
ruptures as a result, allowing the crack front to advance until it meets another obstacle. Many such situations
have been reported in the literature [5]. It is therefore important to investigate how a crack overcomes an
obstacle when there is a weak zone (WZ) ahead of the obstacle.

2.1 Problem formulation and general solution

Consider the plane elastic problem of a semi-infinite crack with a small cohesive zone at its tip and a
WZ along the interface between two dissimilar linear isotropic half-planes (Figure 1). The crack faces are
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subjected to wedge forces at unit distance x = −1 from the tip. The cohesive forces over the small process
zone near the tip of the crack, −` < x < 0, are distributed quadratically [2]: σc = σ(0)(1−R2), R = x/`.

The unit distance from the crack tip to the points of application of the wedge forces sets the largest length
scale of the problem. All other distances are much smaller than unity. In the interval a < x < b, unknown
cohesive forces prevent the opening w(x) of the WZ. The latter is prescribed through the special dislocation
(1) and (2) with the following co-ordinate transformation (where L is the half-length of WZ)

X =
x

L
−D, D =

b + a

b− a
> 1, L =

b− a

2
.

The stress fields, σj
km, and derivatives the displacement vector, u = (u, v), with respect to x can be expressed

through the complex potentials, χj(z), z = x + iy, [6], subject to the following conditions of continuation
across the interface

χ1(z) = −χ1(z), χ2(z) = χ2(z), =z > 0. (4)

The potentials χj(z) (j = 1, 2) are linear transforms of the well-known Kolosov-Muskhelishvili complex
potentials [6]. They are holomorphic in the whole z-plane except along the axis y = 0 and almost everywhere
have finite limits as y → ±0. At y = ±0, the normal and shear stresses and the derivatives of the displacement
vector with respect to x are expressed as follows

σ12 = =χ1, σ22 = <χ2

U± = −<{bjχ
±
1 + ajχ

±
2 }, V ± = ={ajχ

±
1 + bjχ

±
2 },

s(x) = [U ] = U+ − U− = −q<{χ1 + βχ2}, w(x) = [V ] = q={βχ1 + χ2}, (5)

U = du/dx, q = b1 + b2, β = (a1 − a2)/q,

4µjaj = 1− κj , 4µjbj = 1 + κj , j = 1, 2

where κj = 3 − 4νj in plane strain and κj = (3 − νj)(1 + νj)−1 in generalized plane stress. w(x) and s(x)
are the normal and horizontal displacement discontinuities and β is Dundurs’ mismatch parameter.

The solution of this generalised Riemann-Hilbert problem for the two complex potentials [6] contains rapidly
oscillating cofactors. But as shown in [7], they influence only a fairly small (less than 10−4) zone around the
crack tips. Besides, relatively minor shear stresses appear along the sections with full contact. These effects
do not play an important role in the problem at hand and can be neglected for simplicity. The coupled
boundary-value problem is then uncoupled with χ1(z) ≡ 0.

With these approximations which are the better the smaller the value of β, the normal stresses are

σ1(x) =
1
πq

b∫

a

√
|ξ|
|x|

w′(ξ)dξ

ξ − x
, σ2(x) =

1
π

0∫

−∞

√
|ξ|
|x|

σ0(ξ)dξ

x− ξ
, (6)

where, σ1(x) is the contribution of WZ, σ2(x) is the nominal stress in the absence of WZ, and σ(0) is
calculated from the finiteness condition. The normal stress σ2(x) varies rapidly over the WZ, if the zone
a < x < b is situated close to the long crack tip x = 0. The stress field in the vicinity of the long crack is
however only altered significantly by the presence of the WZ when the latter is very close to it (a ¿ b).

Let us now calculate the necessary expressions starting from (1) and (2)
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w′(x) =
dw

dX

dX

dx
= −3w0

L
g(X), a < x < b,

g(X) =
(1 + ηX)(η + X)

√
1−X2

(1 + η2 + 2ηX)5/2
, X =

x

L
−D.

Substituting this expression into the integral for σ1(x) in (6), we get

σ1(x) =
3W0

πL

1∫

−1

√
ξ + D

X + D

g(ξ)dξ

ξ −X
, W0 =

w0

qΣ
(7)

Likewise, the stress component σ2(x) is given by

σ2(x) =
(1 + I)S(R)− I − x

1+x

π
√

x
, I = W0I0 = W0

1∫

−1

(
T (ξ)
ξ + D

)3/2 dξ

2
√

L
, (8)

S(R) =
5
4

{√
R(1−R2)arctg

1√
R
− R

3
+ R2

}
≈ 1− 4

21R
+ O

(
1

R2

)
, R À 1

2.2 Limit and critical loads and computational results

It is expedient to use a Neuber-Novozhilov type failure criterion to establish the force at which the obstacle
0 < x < a will rupture; it will rupture when the average normal stress over it will attain the critical value
σcr – a material constant

1
a

a∫

0

σ(x)dx =
σcr

Σcr
. (9)

where σ(x) = σ1(x) + σ2(x). Then, after explicitly eliminating the singularity in σ(x) at x = 0, we get the
critical applied force

Σcr =
π
√

` σcr − (w0/q) [I3 + I0Ia]
Ia − 2a−1

√
`(
√

a− arctg
√

a)
, Ia =

1
h

h∫

0

S(R)dR√
R

, (10)

I3 =
3
√

`

2a

r0∫

0

√
ri0(r)dr, i0(r) =

1∫

−1

[
T (ξ)
D + ξ

]3/2 D + ξ − r/3
(D + ξ − r)2

dξ; h =
a

`
, r =

x

L
, r0 =

a

L

It should be noted that Σcr decreases when w0 increases from nothing to w∗, because the WZ increases the
stress level in the vicinity of the obstacle. The limit load Σ∗ at which the WZ becomes the nucleus of a
cohesive crack is governed by the criterion (3) and is

Σ∗ =
w∗

qW∗
≈ 3w∗(1 + xm)I1

q
√

L
(Rm À 1), I1 =

1∫

−1

√
T (ξ)(ξ + D)

(1 + η2 + 2ηξ)2
(1 + ηξ)dξ, xm = L(D − η). (11)
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The distribution of stress σ(x) ahead of the long crack is shown in Figures 2 and 3 for a = 0.01, L =
0.01, 0.02, 0.05, and a = 0.1, L = 0.01, respectively. From Figure 2 we notice that the peak stress at the
left tip of WZ depends weakly on its half-length L; calculations not reported here show that this value is
primarily determined by the width of the obstacle a. The stress distribution over the obstacle 0 < x < a
is greatly influenced by a closely located WZ. The influence is localised only when the WZ is much farther
removed from the long crack tip (a À L), as can be clearly seen on Figure 3.

From the solution (1)–(3) one can calculate the σ-w deformation relationship over the WZ domain. This
relationship appears to be close to a linear function with a small distortion in the vicinity of the WZ tips.

3. Conclusions

A semi-inverse method has been proposed for solving the problems of elastic bodies containing adhesively-
bonded weak zones (WZs) situated in highly asymmetric stress fields. It is based on prescribing the dis-
placement jumps in the WZ in the form of a two-parameter basis function (i.e. a special dislocation) that is
asymmetric and has the expected behaviour of the stress and displacement fields near the ends of the WZ.
The advantages of this method are that it is independent of the physical origin of the adhesive forces and
is simple to use for the solution of crack-WZ interaction problems. It is an approximate method which can
however be improved by including higher order terms in the basis function.

The method was demonstrated on the problem of interaction between a long crack and a short WZ separated
by an obstacle. Two limit states of this problem were analysed: (i) the moment at which the WZ becomes
the nucleus of a cohesive crack, and (ii) the moment at which the barrier ruptures allowing coalescence of the
crack with the WZ. These limit states are important for understanding the phenomenon of intermittent crack
growth in structured materials. Explicit expressions have been obtained for limit loads in terms of the given
or calculable parameters of the problem. Computational results did not reveal any physical inconsistency
in the proposed dislocation model of the WZ, thus providing a justification for the semi-inverse method.
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Figure 1: A semi-infinite crack subjected to wedge forces Σ at the interface between two dissimilar elastic
half-planes with a small cohesive zone of length ` separated from an adhesively-bonded collinear weak zone
(WZ) of length 2L = (b− a) by a microstructural obstacle of length a. All lengths `, a, b, L are ¿ 1.

Figure 2: Variation of normal stress σ(x) ahead of the long crack tip with the size of the weak zone when
the obstacle is very narrow (a = 0.01). Note that the effect of WZ is felt over a large region.

Figure 3: Variation of normal stress σ(x) ahead of the long crack tip when the small weak zone is farther
removed from it (a = 0.1). Note that the effect of WZ in this case is fairly localised.
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