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ABSRACT 

Both growth and branching of sharp cracks in perfect crystals are studied  (I and II fracture modes).  
Strength and deformation criteria of Neuber-Novozhilov type are proposed to describe sharp crack branching. 
A classification of materials by behavior types is given: brittle, quasi-brittle, quasi-ductile, and ductile behav-
ior of materials under fracture. The classification is based on the angle characterizing the stress state on an 
imaginary plane. Curves of theoretical single crystal strength of the Coulomb-Mohr type for the generalized 
stress state on this theoretical plane are considered to be known. A possibility for multiple crack branching 
has been revealed that is related to the multiplicity of eigenvalues when buckling the system. It has been es-
tablished that for perfect single crystals, the principle of the local symmetry is realized in the vicinity of the 
crack tip if the crystal symmetry axis coincides with the crack axis and the theoretical strength curve pos-
sesses the appropriate symmetry. When asymmetric perturbations of an atomic lattice occur in the vicinity of 
the crack tip or the symmetry axis of a single crystal is inconsistent with the crack axis, the principle of the 
local symmetry fails.  
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1 INTRODUCTION 
Problems on steady-state growth of sharp cracks (or their branching) at some loading of a 

solid containing straight sharp crack is of certain interests. The complicated stress field is gener-
ated in the vicinity of a tip of a normal rupture crack. At certain conditions, blunting of sharp 
cracks can arise due to large shear stresses or deformations. For the time being, there is no defined 
answer to the question of whether is a sharp rupture crack stable in an perfect crystal due to shear 
stresses or shear deformations in the vicinity of a crack tip. How this stability is associated with 
ideal tensile or shear strength of a single crystal or limiting shear deformability of a crystal lattice?  

Kelly et al. (1967) conceived the steady-state condition for a rupture crack in the form of 
the strength criterion (see Thomson, 1983; Knott, 1983). Rice and Thomson (1974) have supposed 
another steady-state condition for a rupture crack in the form of approximate relationship corre-
sponding to the deformation criterion (see Thomson, 1983; Knott, 1983). We emphasize that the 
branching or blunting of cracks can occur, in general, in different places relative to the crack tip: 
for the strength criterion, crack branching occurs just ahead of the crack tip in material itself, and 
for deformation criterion, crack blunting occurs by shear at crack flanks. 

 
2 STRESS FIELD AND DEFOMATION MODE IN TE VICINITY OF A CRACK TIP 
Isotropic material containing an inner crack is considered at the microlevel as a material 

with the structure. An inner straight crack is modeled by the bilateral cut of length 2l . Let stresses 
σ∞ , τ ∞  be specified at infinity for the crack of the first and second mode, respectively. We con-
sider stability of crack growth to mean the problem of their branching. Assume that material 
considered has the symmetry of strength characteristics relative to the crack plane. In Fig. 1, the 
right tip of such a crack is shown with a solid line in the first quadrant and a dashed line shows the 



  

tip of such a crack is shown with a solid line in the first quadrant and a dashed line shows the 
probable new location of the crack when it branches out, where θ∗±  are branching angles; points 
O  and 1O  correspond to previous and present locations of crack tips at the unit crack extension. 
At 0θ∗ = , a crack extends steadily in a straight line; at 0θ ∗± ≠ , a crack branches out changing 
its direction, at / 2θ π∗ = ±  the crack is blunted when it is opened. Unit advance of both brittle and 
ductile behavior of material under I fracture mode can be identified with angles 0θ∗ =  and 

/ 2θ π∗ = ± , respectively (see Kelly et al., 1967; Thomson, 1983; Knott, 1983; Rice and Thomson, 
1974), but quasi-ductile ( / 2θ π∗ ±� ) or quasi-brittle ( 0θ∗ ±� ) material behavior is possible, 
when 0, / 2θ θ π∗ ∗± ≠ < . We should emphasize that no restrictions are imposed in advance on 
behavior of the system except for the symmetry (as distinct from Kelly et al. (1967), Rice and 
Thomson (1974)). Therefore, generally speaking, such modes are possible when multiple branch-
ing occurs: for example, 21 22 23θ θ θ∗ ∗ ∗≠ ≠  (subscripts refer to numbers of the material structure and 
the loading type). Multiple branching is related to both the complexity of a stress fields in the vi-
cinity of a crack tip and strength properties of isotopic material in the complicated stress state.  

 
Fig.1      Fig. 2 

When crack branching is described, information about a stress field in the polar coordinates 
for the strength criterion needs to be determined, and for the deformation criterion, displacements 
of crack flanks in the rectangular coordinates Oxy  in the vicinity of the crack tip should be 
known. The stress field and displacements of crack flanks in the vicinity of the right crack tip of 
normal rupture can be written in the form, see p. 15 – 17 from Savruk (1988),  

3 2 0
I I I( , ) ( / 2 ) cos ( / 2) ( / 2 )3sin( / 2)cos ( / 2) ( ),r K r K r O rθσ θ π θ π θ θ= − +  

2 2 0
I II( , ) ( / 2 )sin( / 2)cos ( / 2) ( / 2 )[1 3sin ( / 2)]cos( / 2) ( ),r r K r K r O rθτ θ π θ θ π θ θ= + − +

IK lσ π∞= , IK lτ π∞=                                              (1) 

                                 I2 ( ,0) [( 1) / ] / 2 ( ),v x G K x O xη π= + + 0.x ≤                                  (2) 

II2 ( ,0) [( 1) / ] / 2 ( ),u x G K x O xη π= + + 0.x ≤                                 (3) 

Here ( , )rθσ θ  and ( , )r rθτ θ  are normal and shear stresses, respectively, IK  and IIK  are 
Stress Intensity Factors (SIFs) by I and II modes, respectively, 2 ( ,0)v x  is the opening of crack 
flanks, 2 ( ,0)u x  is the crack sliding displacement, G  is the shear modulus, 3 4η µ= −  for planar 
deformation, (3 ) /(1 )η µ µ= − +  for planar stress state, where µ  is the Poisson's ratio. It is appro-



  

priate to study planar deformation for crystals and for fine-grained solids, relations corresponding 
to planar stress state are used. The stress field, see relation (1) and Fig. 1, is defined in a single 
crystal solid, and the opening and displacement of crack flanks, see relation (2) and Fig. 1, is de-
fined beyond a single crystal solid.  

Let us consider the brittle-ductile transition caused by fracture of single crystals for suffi-
ciently long cracks, more precisely, 10 el r> , where er  is the constant of atomic lattice. When re-
strictions are imposed on crack lengths 2l , relations (1)-(3) can be simplified: terms of the order 

0( )O r  are omitted in relation (1), and terms of the order ( )O x are omitted in relations (2), (3). 
Further the Neuber-Novozhilov approach will be used for materials with the regular structure, for 
the specific linear size of isotropic single crystal, the constant of atomic lattice er  is chosen. The 
averaging interval coincides with the segment length 1OO  in Fig. 1, it is equal to er  or 2 er  for 
materials without damages.  

  
3 STRENGTH AND DEFORMATION CRITERIA 

 When stresses σ∞ , τ ∞  gradually increase, proportional loading in the complicated stress 
state occurs in the vicinity of a crack tip. Crack branching (see Kornev and Kurguzov, 1999; 
Kornev and Kurguzov, 2000a; Kornev and Kurguzov, 2001) or dislocation emission is possible 
(see Kornev and Kurguzov, 2000). Branching takes place at every structural level of material as 
shown by Kornev (2000), and dislocation occurs only for the Nano-structure. The system chooses 
one or another way of branching that is associated with strength characteristics of the material. 
The curves of the theoretical strength of the Coulomb-Mohr type are given in Fig. 2 (see Macmil-
lan, 1983; Paul, 1983) for two different material structures and the way of loading is pointed. The 
following notations are used in Fig. 2 for the imaginary plane σ τ− : σ  and τ  are normal and 
shear stresses, respectively, in the area under consideration in the complicated stress state when 
the symmetry axis of strength structure characteristics coincide with a crack-cut; curves 1 and 2 
are curves of the theoretical strength of the first and second structures such that 1 2m m mσ σ σ= =  
are theoretical (ideal) tensile strengths (see Macmillan, 1983; Paul, 1983), and 1 2m mτ τ≠  are theo-
retical (ideal) shear strengths (if theoretical tensile strengths of structures coincide, theoretical 
shear strengths are essentially different); the proportional loading way is figured by 3 beside the 
arrow. The way of loading is characterized by the following relation 

13 13 23 23 3/ / constCσ τ σ τ∗ ∗ ∗ ∗= = =  (notations ,σ τ∗ ∗  are used for stresses of critical states with sub-
scripts corresponding to the structure number and the type of loading); aside from the constant 3C , 
the loading way can be given by the angle ϕ . This constant 3C  or the angle ϕ  define the type of 
loading in the plane σ τ− , the loading type being independent on strength characteristics of mate-
rials. 

 3.1 The strength criterion. Material with a structure containing a crack is under considera-
tion. Let us assume that: i) the strength characteristics of this material possess a symmetry axis 
that coincides with the crack axis, ii) the material is defect-free. Kornev and Kurguzov (1999), 
Kornev and Kurguzov (2000a), Kornev and Kurguzov (2001), Kornev (2000) have been proposed 
the discrete-integral criterion of brittle strength of the Neuber-Novozhilov type for crack extension 
following the chosen directions θ±  that are defined by angles of branching, see Fig 1,  

                                           ( ) ,θσ θ σ∗≤ ( ) ,rθτ θ τ ∗≤                                   (4) 

0

1( ) ( , ) ,
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r dr
nrθ θσ θ σ θ= ∫

0
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r r
e

r dr
nrθ θτ θ τ θ= ∫  1, 2n = .  



  

Here ( ) ,θσ θ ( )rθτ θ  are averaged normal and shear stresses in the chosen directions 

θ± . At ( ) ,θσ θ σ∗< ( )rθτ θ τ ∗< , a crack does not extend (branching is absent). When aver-

aged stresses ( ) ,θσ θ ( )rθτ θ  coincide with stresses of critical states ,σ τ∗ ∗ , the criterion (3) is 

satisfied: the following occur in the chosen directions θ∗±  (i) extension of a straight crack over 
the averaging interval if 0θ∗ =  (branching is absent), (ii) crack propagation over the averaging 
interval when the crack of length 2l  branches out if 0θ∗ ≠ , see Fig. 1. When a crack has ex-
tended at 0θ∗ = , the criterion (4) is applied repeatedly to the straight crack of the length 
2( )el nr+  for estimation of possibility for new crack branching. When branching takes place at 

0θ∗ ≠ , the stress field for a branched crack should be refined, see, for instance, the reference 
book by Savruk (1988) and Argatov and Nazarov (2002), as well as the references to them. Then 
the procedure of estimation of possibility for branching of a crack with fractures is repeated. How-
ever, at 0θ∗ ≠  for a branched crack, the stress field is essentially complicated because the defor-
mation mode II occurs along the mode I.  

We estimate the type of stress state in the vicinity of a crack tip depending on the angle θ  
( π θ π− < < ). For I fracture mode, the results have been obtained by Kornev (2003), Kornev 
(2003a), Kornev (2004). For II fracture mode, we derive the distribution of stresses , rθ θσ τ  by 
simplified relations (1) when terms of the order 0( )O r  are omitted. For some angle θ , the follow-
ing relation can be written  

 2( , ) / ( , ) ( ) / ( ) (3sin ( / 2) 1) /(3sin( / 2) cos( / 2))r rr rθ θ θ θτ θ σ θ τ θ σ θ θ θ θ= = − .         (5) 
Thus, simple shear 0, 0rθ θσ τ≡ ≠  is realized on the crack continuation 0θ =  in the vicin-

ity of its tip; at 2arcsin(1/ 3)θ = − , simple tension 0, 0rθ θσ τ> ≡  is realized in the immediate 

vicinity of the tip crack; at arbitrary angles , 0, 2arcsin(1/ 3)π θ π θ θ− < < ≠ ≠ ± , the generalized 

stress state 0, 0rθ θσ τ≠ ≠  takes place. The angle 2arcsin(1/ 3)θ =  is eliminated from consid-
eration since simple compression on the imaginary plane σ τ−  corresponds to this angle, i.e., 

0, 0rθ θσ τ< ≡ .  
When one of symmetry axes of a structure coincides with the cut, the limiting strength 

curve of the Coulomb-Mohr type in the plane σ τ−  is described by the function 
( ) ( ) ( ) ( )f fρ ϕ ρ ϕ ϕ ϕ= − = = −  (see Fig. 2 and Paul, 1968) that can be related to the Goldstein and 

Salganik (1974) principle of local symmetry for I fracture mode. It should be noted that all four 
quadrants on the imaginary plane σ τ−  are used for II fracture mode, the ϕ π= ±  angle is elimi-
nated from consideration since simple compression on the imaginary plane σ τ− corresponds to 
this angle. Principle of local is not valid for II mode. 

Equations describing branching of inner cracks of the sliding mode take the form 
2

2 2 2

2 ( ) ( ) 1, , 2arcsin
cos ( / 2)[1 3sin ( / 2)] 3e

l nf
r
θ ϕ π θ π θ

τ θ θ∞

= − < < ≠
+

; 

23sin ( / 2) 1arctan , 0
3sin( / 2) cos( / 2)

θϕ π θ
θ θ

−= − ≤ ≤ ; 
23sin ( / 2) 1arctan ,0

3sin( / 2) cos( / 2)
θϕ π θ π

θ θ
−= + ≤ ≤ . 

By relations obtained, calculations for typical functions ( )f ϕ  were performed. 



  

3.2 Kink of crack trajectories at the generalized stress state. The crack extension under 
plane loading and transverse shear corresponding to I and II fracture modes are under considera-
tion. The relations have been obtained that describe the kinking angle of a crack trajectory for the 
arbitrary generalized stress state when curves of the theoretical strength of a single crystal of the 
Coulomb-Mohr type are known. A crack extends in the following directions: i) normally to the 
direction of greatest tension when there are no shear stresses in the vicinity of its tip (Erdogan-Sih 
hypothesis) and material behavior is brittle; ii) along the direction of maximum shear when there 
are no normal stresses in the vicinity of its tip and material behavior is ductile (emission of dislo-
cations occurs); iii) along some direction corresponding to the generalized stress state when mate-
rial behavior is quasi-brittle or quasi-ductile (either opening mode of  interatomic bonds or  dislo-
cation emission for the generalized stress state occur).  

3.3 The deformation criterion for Nano-structures.Deformation criteria have been described 
in works by Kornev (2003), Kornev (2003a), Kornev (2004), where the simplest model of Fren-
kel-Kontorova is used (see Kornev and Kurguzov, 1999; Kornev and Kuruzov, 2000a; Kornev and 
Kurguzov, 2001). For construction of deformation criteria, relations (2) and (3) are used. 

 
4 CRACK BRANCHING, CRACK KINKING. 

ABOUT THE PRINCIPLE OF LOCAL SYMMETRY 
The principle of the local symmetry is realized for I fracture mode in the vicinity of the 

crack tip if the crystal symmetry axis coincides with the crack axis, and the theoretical strength 
curve possesses the appropriate symmetry. When asymmetric perturbations of an atomic lattice 
occur in the vicinity of the crack tip or the symmetry axis of a single crystal is inconsistent with 
the crack axis, the principle of the local symmetry fails for I and II fracture modes.  

The work was supported by Russian Foundation for Basic Research (Grant No. 04-01-
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NSH -319. 2003.1. 
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