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ABSTRACT 

For more then 60 years Weibull statistics is widely used to describe the strength distribution of ceramics. It is 
still the backbone in the mechanical design process of ceramic components. Weibull statistics is based on 
weakest link theory and on the assumption that fracture in ceramics starts at sparsely distributed flaws. But it 
can be shown that the Weibull statistics is not generally valid: it is a special case out of a class of more 
general distribution functions occurring only for a special set of material conditions and in a limited 
parameter space.  

In this paper examples for the deviation of fracture statistics from Weibull statistics are discussed. They 
may occur in materials having bi- or multi- modal flaw distributions, inhomogeneous material properties, an 
increasing crack resistance curve, a too high density of dangerous flaws or in loading situations with steep 
stress gradients. Of course these examples are not complete. 

This analysis is made by theoretical modelling. It is an intrinsic consequence of the statistical behaviour 
of fracture that experimental results show large measuring uncertainties if they are not based on very large 
samples (containing several thousand specimens). But due to the high machining costs of ceramic specimens 
the size of samples is - in general – very small (a typical sample contains 30 specimens). Using Monte Carlo 
simulations it can be shown that in this case a proper distinction between different distribution functions is 
not possible.  

An important consequence of the fracture statistics of brittle materials is the size effect on strength, 
which also depends on the type of fracture statistics. Therefore a way out of the dilemma mentioned above is 
to measure the strength of specimens of different size, what allows the determination of the strength 
distribution with a reasonable experimental effort in a reliable way in a wide range of parameters.  

1  INTRODUCTION 
In ceramic materials fracture - in general – originates at flaws, which are distributed in the material 
or on its surfaces; Davidge [1], Munz et al. [2], Wachtman [3]. The size, orientation and size 
distribution of these flaws are responsible for the scatter of the strength in ceramic materials; 
Jayatilaka et al. [4]: In a homogeneous stress field (as in a tensile test) the "largest" flaw in the 
specimen controls the strength (for simplicity but without loss of generality for the following 
conclusions effects arising from the orientation of flaws are neglected). In general flaws are 
described to behave as cracks. Then the Griffith/Irwin failure criterion, can be used, Munz et al. 
[2], and the strength is proportional to the fracture toughness KIC and inverse proportional to the 
square root of the crack length a: aKIcf πσ = . The geometric factor is assumed to be one: 
Y ≈ 1. The scatter of the strength results from the scatter of the length of the fracture causing flaws, 
Danzer [5]. In consequence the strength distribution (probability of failure, F, as function of stress, 
σ) depends on the distribution of the flaw sizes, a. F increases with increasing stress (at a higher 
stress smaller defects can cause failure and smaller defects occur more frequently) and the mean 
strength decreases with the volume (it is more likely to find a large flaw in a large volume than in 
a small volume), Danzer et al. [6]. 
 In principle the fracture statistics can only be measured using a large sample (containing 
several thousands of specimens or more). For obvious reasons, this can hardly be done. The 
experimental efforts necessary to find the appropriate strength distribution can be reduced to a 
large extent, if its mathematical structure is known. Then only some material parameters instead of 
the entire distribution curve have to be determined. This is the motivation for the theoretical work 
on fracture statistics.  
 Weibull was the first who proposed a statistical theory of brittle fracture Weibull [7, 8]. His 
fundamental assumption was the weakest link hypothesis, i.e. the specimen fails, if its weakest



volume element fails. Using some empirical arguments necessary to obtain a simple and good 
fitting of his experimental data, he derived the so-called Weibull distribution function, which - in 
its simplest form and for an uniaxial homogenous and tensile stress state and for specimens of the 
volume, V, - is given by: 
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The Weibull modulus m is a measure for the scatter of strength data: the distribution is the wider 
the smaller m is. σ0 is a characteristic strength value and V0 the chosen normalising volume. It 
should be noted, that in almost all experimental studies on the strength distribution of ceramics, it 
is claimed that the data are Weibull distributed. But this is not necessarily true, because - for that 
type of statement - the sample size is too small. This point will be discussed in section 3. 
 In the past, a significant amount of research was directed towards giving Weibull's theory a 
more fundamental basis. The paper of Kittl et al. [9] gives a good overview on the former 
developments. Freudenthal [10] and Danzer [5] showed that, for a homogenous and brittle material 
and if the flaws do not interact, the probability of failure only depends on the number of critical 
flaws, Nc, occurring in a specimen of size and shape, S,  
 )](exp[1)( , σσ ScS NF −−=    ,          (2) 
where Nc,S(σ) denotes the mean number of critical flaws in a large set of specimens (i.e. the value 
of expectation). In the following, without loss of generality, the specimen size and shape will be 
replaced by the specimen volume. Jayatilaka et al. [4] demonstrated in their noteworthy paper, 
that, for a brittle and homogeneous material, the distribution of sizes (and orientations) of the flaws 
causes the distribution of the strength data and that a Weibull distribution of strength will be 
observed for flaw populations where the density of flaws decreases monotonically with size. 
Danzer et al. [6, 11, 12] extended their ideas to flaw populations with any size distribution and to 
specimens with an inhomogeneous flaw population Danzer et al. [13]. Again it was necessary to 
assume, that a specimen fails if any single one flaw initiates fracture, and that there is no 
interaction between flaws (the weakest link hypothesis). The function Nc,V(σ) is obtained by 
integrating the local density of destructive flaws  
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over the specimen's volume: Nc,V = ∫ncdV. For simplicity and without loss of generality it has been 
assumed that the size and orientation of a flaw can be described by the single variable (the 
effective flaw length, a); Jayatilaka et al. [4]. The frequency distribution density of flaw lengths, 
g(a), may depend on the position vector, rv . A local fracture criterion (e.g. the Irwin/Griffith 
criterion) correlates stress amplitude and flaw length: Since the critical flaw length, ac(σ). depends 
on the magnitude of the applied stress, so do the value of nc and also of Nc,S. For homogeneous 
materials and for flaw populations with relative frequencies that decrease according to a negative 
power of their (effective) radius, a, a Weibull distribution is expected to occur, Jayatilaka et al. [4].  
 In this paper it is shown that - as a consequence of the ideas presented above – the Weibull 
modulus may depend on the stress and the volume, i.e. the strength distribution is not a Weibull 
distribution, Danzer et al. [6, 11, 13]. Monte Carlo simulations are made to perform "virtual" 
strength tests and to give a sound basis for the discussion whether such effects can experimentally 
be observed with a sound significance or not; Danzer et al. [6, 14]. Finally the size effect on 
strength is discussed.  

 



2  FLAW DISTRIBUTIONS AND FRACTURE CRITERION 

2.1  Weibull distribution 
 If the fracture toughness is independent on the crack advance the simple Griffith/Irwin failure 
criterion applies for many ceramic materials: IcKaK ≥= πσ  (K: stress intensity factor) and the 
lower integration limit (critical crack size) in eq. 3 is: ac ~ σ -2. It is often claimed that the relative 
frequency of sparsely distributed flaws decreases with their size, what can – in general - 
approximately be described by an inverse power law: g(a) ~ a-b. b is a number and the integral, 
eq. 3 is nc ~ σ -2(b – 1). For a homogeneous tensile stress state it holds: Nc,V ~ Vσ 2(b – 1). This 
corresponds exactly to the Weibull distribution, eq. 1, with m = 2(b – 1), Jayatilaka et al. [4]. 

Typical values for m are between 10 and 20 and for b between 6 and 11, which indicates a very 
steep decrease of relative frequency with increasing crack length. This simple evaluation shows, 
that the Weibull distribution describes the situation in materials with a special (but often 
occurring) flaw size distribution and failure criterion. 

2.2  Unimodal flaw size distribution 
 In general there must exist a lower and an upper bond for the existence of flaws: Very small 
flaws will heal out and large flaws cannot be larger than the specimen size. Therefore there also 
must exist a most frequent flaw size. The behaviour described in section 2.1 can only occur on the 
right hand side of this maximum, in a size interval, where the inverse power law is an appropriate 
approximation of the flaw size distribution, g(a). The upper bond of the flaw size will cause a 
lower bond for the strength (which can be very small but still exists) and the lower bond of flaw 
sizes will cause an upper bond for the probability of failure (which depends on the volume, it can 
be near one but will never reach one). In other words the "Weibull modul" gets stress dependent 
and the fracture statistics is not longer the Weibull statistics, eq. 1; Danzer et al. [11, 13].  
 The Weibull distribution is a good approximation for critical flaws being in the size interval 
(i.e. in the stress interval) were the inverse power law describes g(a). It is still assumed that flaws 
are sparsely distributed and that the Griffith/Irwin failure criterion is applicable. 

2.3  Bi- and multi- modal flaw size distributions. 
 Flaws are inhomogeneities in the microstructure, which result from the processing of the 
machining of the specimens. Examples in ceramics are inorganic or organic inclusions, hard or 
hollow agglomerates, badly sintered grain boundaries, large grains or cracks arising from the 
machining. It is obvious that each individual flaw population will have its typical size distribution. 
This has strict consequences on the fracture statistics. Let us discuss them on the example of a two 
modal population of sparsely distributed volume flaws. The first population (I) should have a flaw 
size distribution, which causes a Weibull distribution and the second population (II) should be 
narrow peaked (have a lower bond, al, and an upper bond, au, opening only a narrow window for 
possible flaw sizes: al ≤  a ≤  au); Danzer et al. [6, 14]. The number of critical defects is the sum of 
the defects of both populations: Nc = Nc,I + Nc,II and each number can be evaluated separately. For 
the first population the stress dependency is: Im

Ic VN σ⋅∝, . For the second population there exist 
three stress intervals: (a) σ ≤ Kic/(πau)1/2, (b) Kic/(πau)1/2 ≤ σ Kic/(πal)1/2, and (c) Kic/(πal)1/2 ≤ σ. In 
these regions the contribution of population II to Nc,S is (a) Nc,II = 0, (b) max,,,0 IIcIIc NN ≤≤ and 
(c) Nc,II = Nc,II,max = V· ∫ u

l

a
a II dag  respectively. That means that – compared with the situation, 

where only population (I) exists (the Weibull case) the probability of failure (and the Weibull 
modul) is not altered in region (a), strongly altered in region (b) and almost not altered in region 
(c): defects have only a significant influence on the probability of failure in that stress interval, 
which corresponds to the size interval of their occurrence. 



 Of course similar results can be expected for other types of bi- modal and multi- modal flaw 
populations. It should be noted that structures in the strength distribution belong to structures in 
the flaw size distribution and vice versa (a ~ σ -2).. In these cases the strength distribution is not a 
Weibull distribution. 

2.4  Ceramics with increasing crack resistance curve 
 If the fracture toughness of a ceramic increases with increasing crack length (R-curve 
behaviour) some stable crack growth before fracture is possible: aaa ∆+→ 0 . Then the Griffith/ 
Irwin fracture criterion has to be supplemented by the condition aRaK ∂∂≥∂∂ // ; R being the 
fracture toughness, which depends on the crack extension, ∆a; Munz et al. [2]. In this case the 
strength is: σf = (KIc,0 + ∆KIc)/(π(a0 + ∆a))1/2. As well as the increase in fracture toughness, IcK∆ , 
also the crack extension, a∆ , depend on the shape of the R-curve but also on the length of the 
starter crack, a0. It is obvious that the R-curve behaviour leads to a homogenisation of the critical 
crack length in the material, Danzer et al. [13]. This causes a stress dependence of the Weibull 
modulus (it increases) and the strength is not longer Weibull distributed.  

2.5  Other effects influencing the Weibull modulus and the strength distribution 
 There exist many other effects, which may affect the Weibull modulus and the shape of the 
strength distribution. In this paper only examples can be mentioned.  
 Such an effect is claimed for materials with a non-homogeneous microstructure, Danzer et al. 
[13], and for materials containing residual stresses, Danzer et al. [14]. Fett et al. [15] all observed 
strong deviations of the Weibull distribution, if specimens are loaded with steep stress gradients, 
as they occur due to contact loading or thermal shock loading. Zimmermann et al. [16] analysed 
the case of a crack in front of a pore (such defects are often observed in ceramics produced by 
pressing and sintering spray dried powders) and observed that for that case the size effect on 
strength disappears. Similar behaviour is observed by Lu et al. [17, 18] for materials containing 
flaws of such high densities that interaction between flaws gets possible. 

3  MONTE CARLO SIMULATIONS - SAMPLE AND POPULATION  
Monte Carlo simulation techniques can be used to simulate experiments in order to judge how 
precise a sample can describe the population: Random numbers between 0 and 1 are diced. The 
number of random numbers is equal to the size of the sample. Then - for a given strength 
distribution (the population) - the corresponding strength values are determined (virtual strength 
testing). These data are then analysed in the usual way in order to find the corresponding fracture 
statistics (the sample), Danzer et al. [6, 14].  
 Standards recommend to test at least 30 specimens if the parameters of the Weibull statistics 
are to be determined, ENV843-5 [19]. Due to the high specimen costs more specimens are not 
tested in general. For modern ceramic materials the Weibull modulus is – in general – between 10 
and 20. With the Monte Carlo techniques described above it can easily be shown that in that 
parameter range and testing only 30 specimens no clear distinctions between different statistics 
(e.g. Weibull, normal, log- normal) can be made, Lu et al. [20]. In the relevant parameter range a 
clear distinction between different statistical distribution functions would make the testing of 
several thousand specimens necessary, Danzer et al. [11]. Under these conditions it is clear that a 
Weibull distribution can be adjusted to any small sample. But it should be recognised, that this 
does not necessarily mean, that the population is a Weibull distribution. 

4  SIZE EFFECT ON STRENGTH 
For obvious reasons it is not possible to test several thousand of specimens to determine a fracture 
statistics. A way out of this dilemma is the testing of specimens of different size. In the fracture 



statistics, eq. 2, the only variable is the mean number of critical flaws, Nc,V(σ), which depends on 
the specimen size (volume V) and the applied stress, σ. Therefore the variables σ and V are 
exchangeable: the same number of flaws may occur in a large volume at a low stress or in a small 
volume at a high stress level. Instead of testing many small specimens to get some failures at low 
stresses, a few specimens with a large volume can be fractured. Using eq. 1 or eq. 2 the behaviour 
of a few large specimens can be translated into the behaviour of many small specimens. Details 
can be found in Danzer et al. [6]. 
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Fig. 1: Bi modal flaw population; one 
population is narrow peaked:  
a) relative frequency distribution and density of 
critical defects,  
b) strength distributions for tensile specimens 
with the volume 8·10-2, 10 and 1,25·103 mm3 
respectively (the shaded area is the interval of 
failure probabilities for a sample containing 30 
specimens) and  
c) characteristic strength versus specimen 
volume. The scatter bars refer for the 90 % 
confidence intervals of samples containing 30 
specimens. 

 
 Fig. 1 gives an illustrative example. Shown is the type of bi modal distribution discussed in 
section 2.3. (a) shows the relative frequency distribution of the flaw size and the corresponding 
density of critical defects (see eq. 3) and (b) shows the corresponding strength distribution 
functions (eq. 2) for three types of tensile specimens with different volume. Since structures in the 
distribution function refer to defect populations of a typical size, they belong also to a typical 
strength value (ac ~ σ -2). In (c) the corresponding strength for a failure probability of 63 % is 
plotted versus the volume. Confidence intervals refer to 90 %. The shaded area in (b) is the 
measuring interval (for the failure probability) for a sample size of 30. It is interesting to note, that, 
in this case, the peaked flaw population can only be recognised, if the specimens of medium size 
are tested (b, c). It is obvious from Fig. 1 that the fracture statistics is an image of the flaw size 
distribution and that both can be determined with reasonable effort by testing specimens of 
different size. 

a) 

c) 

b)



5  CONCLUSIONS 
• The most important consequence of the fracture statistics of brittle materials is the size 

effect on strength, which must be taken into account in ceramics design.  
• The fracture statistics reflects the size distribution of flaws in the material. 
• The fracture statistics is not always a Weibull statistics, but this can not be decided on the 

basis of a small sample containing about 30 specimens. 
• With reasonable experimental effort the relevant fracture statistics can be determined 

using a sample, which has (small) sub samples with specimens of different size. 
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