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ABSTRACT

A modified linear-elastic method of analysis is proposed for the determination of fatigue strengths and fatigue

lifetimes of biaxially loaded components containing defects. The method assumes that the fatigue strength

and the fatigue lifetime are both controlled by fatigue crack propagation considerations, and that the fatigue

cracks propagate as Mode I cracks. The modifications made to the standard method of linear analysis are as

follows:

1. A modification to include consideration of elastic-plastic behavior.

2. A modification to deal with the inability of the standard approach to predict fatigue crack growth

behavior in the small crack regime.

3. A modification to deal with the development of crack closure in the wake of a newly-formed crack.

A number of material constants are involved in the analysis. These include the effective fatigue crack growth

threshold, ΔKeffth; the crack opening level for a macroscopic crack, Kopmax; and k, a constant which determines

the rate of crack closure development with crack advance.

     Experiments were carried out under combined cyclic loading conditions employing specimens of two

steels which differed in their mechanical properties and which contained simulated surface defects of various

sizes to check on the accuracy of the predictions. It was found that both the predicted fatigue strengths as well

as the predicted fatigue lives agreed well with the experimental results.

1 INTRODUCTION

The design engineer often has to make estimates of the fatigue strengths and fatigue lives of

components which will be subjected to biaxial loading based only upon limited data obtained

under uniaxial conditions. Therefore there is some uncertainty concerning the reliability of such

estimates, particularly when defects may be present in the components. To improve reliability it

may necessary to go through the costly experimental process of obtaining the fatigue properties

under simulated service conditions. It would therefore be helpful if a reliable means were available

to be able to predict fatigue behavior of components containing small defects under various biaxial

stress conditions based upon a minimum of uniaxial data, such as the yield strength and the fatigue

limit. The analysis presented in the present paper represents a step in this direction, and includes

experimental results to serve as a check on the analysis. The analysis assumes that the fatigue

lifetime is essentially spent in crack propagation; that is, any crack initiation period is small with

respect to the total fatigue life and can be neglected. In addition it is assumed that fatigue cracks



propagate as Mode I cracks. Experiments (Endo [1]) have shown fatigue cracks emanating from

simulated defects under biaxial stress conditions of loading propagate in a direction approximately

perpendicular to the maximum principal stress, lending support to the above assumption. To carry

out the analysis certain material constants must be known or estimated. These include the effective

stress intensity factor range at threshold, ΔKeffth, a material constant k, which determines the rate at

which crack closure develops, and Kopmax, the crack opening level of a macroscopic crack. For a

given alloy group such as steels, estimates of the magnitude of these constants can be made based

upon prior work with similar alloys. For example, ΔKeffth will always be close to 3.0 MPa  

€ 

m  for

steels.

2 ANALYSIS
 The basic equation used in the analysis is (McEvily, Eifler and Macherauch [2]):

    
    

€ 

da
dN

= A(ΔKeff − ΔKeffth )2,          (1)

which can also be written in the form

    

€ 

da
dN

= A ΔKI,biaxial − (ΔKop + ΔKeffth )[ ]2
,               (2)

where A is a material constant of the order of   

€ 

4×10−10  (MPa  

€ 

m )-2 for steels, and
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Δσ1, (3)

where σ1 and σ2 are principal stresses, re is a material constant of the order of 1 µm (see below)

which is introduced to compensate for the fact that a standard linear elastic analysis is not able to

deal with short cracks, and Y reflects the particular crack geometry involved. For a semi-circular

surface crack Y has a value of 0.73. Fbiaxial is introduced to deal with elastic-plastic behavior, and is

defined as
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where σY,biaxial and σY are the yield stresses under biaxial and uniaxial loading, respectively. The

following equation is used to characterize the development of crack closure in the wake of a newly

formed crack

    

€ 

ΔKop = (1− e−kλ)(Kopmax −Kmin ) ,           (5)

where λ is the length of the actual fatigue crack, and Kopmax is the crack opening level for a

macroscopic crack, and     

€ 

Kmin = −ΔKI,biaxial / 2 for R = -1 loading.

     The value of re is calculated from the following equation:

    

€ 

ΔKI,uniaxial = 2πreF + Y πreF( )(2σw0) = ΔKeffth , (6)



where σw0 is the uniaxial fatigue strength defined to be the minimum stress amplitude at which a

crack can propagate to failure, and
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3 EXPERIMENTAL PROCEDURES

The materials investigated were an annealed 0.37 % carbon steel (JIS S35C) and a quenched and

tempered Cr-Mo steel (JIS SCM435). The chemical compositions are listed in [1]. The mechanical

properties measured after heat-treatments are shown in Table 1.

     The smooth specimens had a uniform cross section of either 8.5 or 10 mm in diameter, and 19

mm in length. After heat treatment a 30 µm thickness of surface layer was removed by electro-

polishing, a drilled hole or a crack as shown in Fig. 1 was then introduced into the surface to

simulate a defect. Both the major axes of in-line holes and the crack faces were normal to the

maximum principal stress. It was experimentally confirmed that the shape of a crack was

approximately semi-circular in torsion as well as in tension-compression. A single cylindrical hole

is referred to as a 1-hole defect and a defect connected with two or three adjacent holes is referred

Table 1: Mechanical properties.

Lower yield point

(MPa)

Tensile strength,

(MPa)

Reduction in area

(%)

Vickers hardness

HV
S35C 328 563 47.5 160
SCM435 851 947 65.7 324

Fig. 1: Shapes and dimensions of artificial defects (in µm).

(a) 1-hole defect        (b) 3-hole defect

(c) Semi-circular

crack of 200 µm
in depth

(d) Semi-circular

crack of 600 µm

in depth



to as a 2-hole or 3-hole defect. In the case of SCM435, fatigue cracks were initiated at the 2-hole

defects, a crack starter, and grown to total lengths of either 400 µm or 1200 µm. After pre-

cracking, the specimens were annealed at 600

€ 

°C  in vacuum to eliminate any residual stresses. The

  

€ 

area  parameter model (Murakami [3]) was used to convert the initial defect size of 1-hole

defect or a 3-hole defect into an equivalent the crack depth, a0, for a semi-circular crack by use of

the relation     

€ 

a0 = 2 / π area .

     Tension-compression tests were carried out using a servo-hydraulic uniaxial testing machine

with an operating frequency of 50 Hz. The torsional and combined load tests were performed

using a servo-hydraulic axial/torsional testing machine operating at 30-45 Hz. All tests were

conducted under in-phase fully reversed (R = -1) loading using a sinusoidal waveform. The ratio

of the amplitude of shear stress to amplitude of normal stress, τ/σ, was chosen to be either 0, 1

or

€ 

∞, which corresponds to principal stress ratios, σ2/σ1, of 0, -0.382 and –1, respectively.

4 RESULTS AND DISCUSSION

4.1 Fatigue strengths

Figures 3 and 4 show a comparison of the predicted and experimental fatigue limits of specimens

containing defects. The endurance limit for a smooth specimen under biaxial loading was related

to the experimentally known endurance limit under axial loading by the following equation:

Fig. 2: Relationship between principal stress

amplitude at fatigue limit and initial
defect size (S35C).

Fig. 3: Relationship between principal stress

amplitude at fatigue limit and initial
defect size (SCM435).
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     Since the value of σw0 is known from experiments, and re and F can be obtained from eqns (6)

and (7), respectively, the right hand side of eqn (8) can be evaluated.  For a given ratio of σ2 to σ1

the left hand side of eqn (8) can then also be evaluated.

     The predicted fatigue strengths for specimens containing defects were calculated by setting

da/dN in eqn (2) equal to zero; that is,

     

€ 

ΔKI,biaxial − ΔKop + ΔKeffth( ) = 0. (9)

Equation (9) can be written in expanded form as

    

€ 

ΔKI,biaxial − (1− e−kλ)(Kopmax −
1
2
ΔKI,biaxial) − ΔKeffth = 0, or

ΔKI,biaxial −
2 ΔKeffth + (1− e−kλ)Kopmax[ ]

1+ e−kλ
= 0.

        (10)

ΔKI,biaxial was calculated from eqn (3), and the material constants used in the calculations are given

in Table 2. In carrying out the calculations, it was found that the calculated fatigue strength for

specimens containing small defects sometimes exceeded the fatigue strength of a smooth specimen.

In such cases the fatigue strength of a smooth specimen was substituted for the calculated value.

This resulted in the horizontal lines shown in Figs. 3 and 4.

    

4.2 Lifetime predictions

A relationship between the initial defect length, a0, and number of cycles to failure, Nf, as a

function of stress amplitude was obtained by integrating eqn (1) between the limits a0 and the final

crack length, af, with the value of af taken to be 5 mm.  Figure 4 shows the S-N curves for SCN435

pre-cracked specimens, in which a comparison of calculated results and experimental data is made.

The value of A of   

€ 

4×10−10(MPa m)−2 was used to provide a best fit.  It is noted that in the case

of SCM435, the influence of load types on the S-N curves was relatively small as compared to

S35C at the same a0 value. This is because in the case of SCN435 the applied stresses are smaller

compared to the yield stress (σY = 851 MPa) than in the case of S35C (σY = 328 MPa) and

therefore the elastic-plastic effects is much smaller.

σY

MPa

σw0

MPa

A

  

€ 

(MPa m)−2
k

m-1

Kopmax

  

€ 

MPa m
ΔKeffth

  

€ 

MPa m
re

µm

S35C 328 230

€ 

4 ×10−10 20000 3.0 2.5 1.3

SCM435 851 518*

€ 

4 ×10−10 60000 3.0 2.5 0.3
* The fatigue strength of smooth specimens of SCM435 was estimated by use of the relation σw0 = 1.6HV.

Table 2: Material constants used in the analysis.



5 CONCLUDING REMARKS

1. A method of analysis for determining the fatigue strength of specimens containing defects under

biaxial loading conditions has been proposed. Good agreement between predictions based upon

this method and experimental results has been obtained.

2. The method has also been used to predict the fatigue lives of specimens containing defects under

biaxial loading. Again good agreement between experiment and predictions was obtained.
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Fig. 4: S-N curves of pre-cracked specimens (SCM435).


