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ABSTRACT 

 
A fact that has been neglected in most theories of brittle fracture is that the elasticity of a solid 

clearly depends on its state of deformation. Metals will weaken, or soften, and polymers stiffen as the strain 
approaches the state of materials failure. It is only for infinitesimal deformation that the elastic moduli can be 
considered constant and the elasticity of the solid linear. We show by large-scale atomistic simulations that 
hyperelasticity, the elasticity of large strains, can play a governing role in the dynamics of fracture and that 
linear theory is incapable of capturing all phenomena. We introduce a new concept of a characteristic length 
scale χ for the energy flux near the crack tip and demonstrate that the local hyperelastic wave speed governs 
the crack speed when the hyperelastic zone approaches this energy length scale. The new length scale χ, 
heretofore missing in the existing theories of dynamic fracture, helps to form a comprehensive picture of 
crack dynamics, explaining super-Rayleigh and supersonic fracture. We further investigate the stability of 
cracks, and show agreement of the Yoffe criterion with the dynamics of cracks in harmonic systems. We find 
that softening hyperelastic effects lead to a decrease in critical instability speed, and stiffening hyperelastic 
effects leads to an increase in critical speed, allowing for straight crack motion up to super-Rayleigh crack 
speeds. The main conclusion is that hyperelasticity plays a critical role in forming a complete picture of 
dynamic fracture.  

 
1. INTRODUCTION 

We show by large-scale atomistic simulation that hyperelasticity, the elasticity of large 
strains, can play a governing role in the dynamics of brittle fracture. This is in contrast to many 
existing theories of dynamic fracture where the linear elastic behavior of solids is assumed 
sufficient to predict materials failure [1]. Some experiments [2-4] as well as many computer 
simulations [5, 6] have shown a significantly reduced crack propagation speed in comparison with 
the theoretical predictions. Such discrepancies between theories, experiment and simulations can 
not solely be attributed to the fact that real solids have imperfections, as similar discrepancies also 
appear in molecular-dynamics simulations of cracks traveling in perfect atomic lattices. It was 
recently proposed that hyperelastic effects at the crack tip play an important role in the dynamics 
of fracture [3, 7]. In contrast, it is not generally accepted that hyperelasticity should play a 
significant role in dynamic fracture. This is because the zone of large deformation is highly 
confined to the crack tip, so that the region where linear elastic theory does not hold is extremely 
small compared to the extensions of the specimen [1]. Here we use molecular-dynamics 
simulations [5, 8-10] in conjunction with continuum mechanics concepts [1] to prove that 
hyperelasticity is crucial for understanding dynamic fracture. The first part of studies show that 
local hyperelasticity around the crack tip can significantly influence the limiting speed of cracks 
by enhancing or reducing local energy flow, even if the zone of hyperelasticity is small compared 
to the specimen dimensions. The hyperelastic theory drastically changes the concept of the 
maximum crack velocity in the classical theories. For example, the classical theories predict that 
mode I cracks are limited by the Rayleigh-wave speed and mode II cracks are limited by 
longitudinal wave speed. In contrast, both super-Rayleigh mode I and supersonic mode II cracks 
are allowed by hyperelasticity [8]. We find that there exists a characteristic length scale associated 
with energy flow near the crack tip that explains supersonic crack motion: Hyperelasticity 
completely dominates crack dynamics if the size of hyperelastic region approaches this 



characteristic length. In the second part of the paper, we report studies on the crack tip instability, 
and we show that hyperelasticity also plays a governing role.  

 
2. SIMULATION METHOD AND ATOMISTIC MODEL 

We consider a crack in a two-dimensional simulation geometry with slab width xl  
propagating in a triangular hexagonal lattice (details see [11]). To avoid crack branching, a weak 
fracture layer is introduced so that atomic bonds across the prospective crack path snap at a critical 
atomic snapping distance breakr , while those in the rest of the slab never break. The snapping 
distance is used to adjust the fracture surface energy γ  [11]. We adopt a biharmonic interatomic 
potential composed of two spring constants 0k  and 01 2kk =  serving as a simplistic model of 
hyperelasticity common to a large class of real materials [11]. We consider two “model materials”, 
one with elastic stiffening and the other with elastic softening behavior. The spring constant 0k  is 
associated with small perturbations from the equilibrium distance 0r , and the second spring 
constant 1k  is associated with large bond stretching ( onrr > ). Harmonic systems are obtained if 

onr  is chosen to be larger than breakr . 
 

  
Figure 1: Plots (c) and (b) show the shape of 
the hyperelastic region for the stiffening and 

softening case. 

Figure 2: Change of energy flow due to 
hyperelastic stiffening (a) and softening (b) 

effect. 
 

3. CRACK SPEED AND ENERGY FLOW 
 

We show that a localized, small hyperelastic region around the crack tip can have 
significant effects on the dynamics of crack propagation. In the simulations, the slab is loaded with 
0.32 percent strain in mode I. The strain energy density far ahead of the crack tip is given by 

2/)1/( 22 νε −= ElS xxx , where E  is the Young’s modulus at small strain. The linear elastic 
expression of strain energy density is valid because material far ahead of the crack is strained 
always below the onset threshold of the bilinear law, that is, it remains in the linear elastic regime 
of material response. According to the linear theory of fracture [1], the crack speed should satisfy 
the dynamic energy release rate equation ScvA R /2)/( γ=  where the function )/( RcvA  is a 
universal function of crack velocity. Linear theory predicts that crack velocity should depend only 
on the ratio γ/S . Our strategy is to focus on the prediction from linear theory that crack velocity 
depends only on the ratio γ/S . In the harmonic systems, since ES ∝  and E∝γ  [11], we 
choose the parameter breakr  to be identical in all cases. In the biharmonic systems, we adjust the 

parameter breakr , at given values of onr , 0E  and 1E ,  to always keep γ/S  constant. 



We choose 17.1=breakr  for the harmonic systems, and the crack achieves the same propagation 
velocity around 80 percent of the Rayleigh wave speed, consistent with linear theory. For the 
biharmonic systems, we choose 1275.1=onr  and 1558.1=breakr  in the stiffening case, and 

1919.1=breakr  in the softening case (then γ/S =const.). In contrast to the linear theory prediction, 
we find that the crack speed is about 20 % larger in the stiffening system and 30 % smaller in the 
softening system. These deviations can not be explained by the linear theory: The fact that we 
change the large-strain elasticity while keeping the small-strain elasticity constant indicates that 
hyperelasticity is affecting crack dynamics! The region occupied by atoms having a local 
maximum principal strain 001 /)( rrron −>ε  defines the hyperelastic area A  [11, 12]. Fig. 1a 
shows the hyperelastic area in the case of a stiffening material, and Fig. 1b shows the hyperelastic 
area in the case of an elastically softening material. The hyperelastic effect is highly localized to 
the crack tip (the pictures show a portion of the simulation slab near the crack tip).  
 

 

 
Figure 3: Shear strain field during intersonic mode I 
crack propagation. The fact that mode I cracks can 

move faster than the shear wave speed is completely 
contradicting the existing theories of fracture. This 

observation suggests that the energy release rate does 
not vanish for mode I cracks in excess of Rayleigh-
wave speed, thus the universal function A(v/cr) of 

linear elastic fracture mechanics theories [1] is 
incorrect. Intersonic mode I cracking, for the first time 
observed in computer simulation, was recently verified 

in experiment [14].  
 

 
A measure for the direction and magnitude of energy flow in the vicinity of the crack tip 

is the magnitude of the dynamic Poynting vector [11, 13]. A measure for the change in energy 
flow is obtained by subtracting the magnitude of the dynamic Poynting vector in the harmonic case 
from that in the biharmonic case at every point in the slab, harmbiharm PPP −=∆ . If the difference is 
negative, energy flow is reduced, and if the difference is positive, energy flow is enhanced. Fig. 2a 
and b shows the energy flow enhancement and reduction in the vicinity of the crack tip for the 
elastically stiffening bilinear system (a) and for the elastically softening system (b). In each plot, 
the local hyperelastic zone is indicated by a dotted line. The energy flow in the vicinity of the 
crack tip is enhanced in the bilinear stiffening case and reduced in the softening case. The plots 
show that the local hyperelastic effect leads to an enhancement (stiffening system) or reduction 
(softening system) in energy flow. The higher crack velocity in the stiffening system and the lower 
velocity in the softening system are due to enhancement or reduction of the energy flow in the 
vicinity of the crack tip. Steady state crack motion is confirmed by the path-independency of the 
dynamic J-integral. 

An important result is that when sufficient loading is applied to the system, mode I cracks 
in bilinear stiffening solids can reach speeds beyond the Rayleigh-wave speed. It was shown that 
the size of the hyperelastic region can be correlated with the crack speed, for different choices of 
the potential parameter onε  [11]. The larger the hyperelastic region, the higher the crack speed, 
and for purely harmonic systems the terminal crack velocity is the Rayleigh-wave speed.  



Even intersonic mode cracks can be observed, when the stiffening is relatively strong 
(here 01 4kk = ). Intersonic mode I cracking is shown in Figure 3. This phenomenon has, motivated 
by MD simulation results [11], recently been verified in experiment [14]. Our observations can be 
explained by the concept of the characteristic energy length scale. The problem of a super-
Rayleigh mode I crack in an elastically stiffening material is somewhat analogous to Broberg’s 
[15] problem of a crack propagating in a stiff elastic strip embedded in a soft matrix (Fig. 7a). It 
was shown that the energy release rate can be expressed in the form ),,(/ 21

2 ccvEfhG σ= , where 
σ  is the applied stress, h  is the half width of the stiff layer and  f  is a non-dimensional function 
of crack velocity and wave speeds in the strip and the surrounding matrix. The dynamic Griffith 
energy balance requires γ2=G , indicating that crack propagation velocity is a function of the 

ratio χh  where 2/σγχ E∝  is defined as a characteristic length scale for local energy flux. By 
dimensional analysis, the energy release rate of our hyperelastic stiffening material is expected to 
have similar features except that the strip width h should be replaced by a characteristic size of the 
hyperelastic region Hr . Therefore, we introduce the concept of a characteristic length 

2/σβγχ E=  for local energy flux near a crack tip. We find that the mode I crack speed reaches 
the local Rayleigh wave speed as soon as χh  gets sufficiently large and verify that the scaling 
law holds by changing γ , E  and σ  independently (details can be found in [11]). Under a 
particular experimental or simulation condition, the relative importance of hyperelasticity is 
determined by the ratio χ/Hr . For small χ/Hr , the crack dynamics is dominated by the global 
linear elastic properties since much of the energy transport necessary to sustain crack motion 
occurs in the linear elastic region. However, when χ/Hr  approaches unity, as is the case in some 
of our molecular dynamics simulations, the dynamics of the crack is dominated by local elastic 
properties because the energy transport required for crack motion occurs within the hyperelastic 
region. The concept of energy characteristic length χ  immediately provides an explanation how 
the classical barrier for transport of energy over large distances can be undone by rapid transport 
near the tip.  

 
4. HYPERELASTICITY GOVERNS CRACK TIP INSTABILITIES 

 
 In addition the studies on crack speed and energy flow, we report preliminary studies 

focusing on the effect of hyperelasticity on the instability dynamics of cracks. It is known that 
cracks in softening materials become unstable at reduced speeds compared to the theoretical 
prediction of 73 % cR by the Yoffe criterion [1-3, 7]. Our simulations of cracks in homogeneous 
materials with linear elastic properties (harmonic potential) show that the instability occurs at 
about 73 % cR, in perfect agreement with the prediction by theory (Fig. 4a). We note that the 
branching angle of 60 degree also matches the theoretical prediction [1], and the instability can be 
correlated with the development of a bimodal hoop stress as originally proposed by Yoffe (Fig. 4a 
and b). 

As in the previous case, the linear systems now serve as reference system when we probe 
crack dynamics in nonlinear materials. To test the nonlinear dynamics, we use a similar 
biharmonic potential as in the previous sections, with the difference that it smoothens close to 
bond breaking, which leads to smoother crack acceleration (details on the potential will be 
published in another paper). The results show that cracks become unstable at much lower speeds 
when softening materials are used (Fig. 5a), and that cracks are stable up to velocities close to the 
Rayleigh-wave speed in stiffening materials (Fig. 5b). In some simulations with very strong 



stiffening effect ( 01 4kk = ), the instability speed is even super-Rayleigh! Such observations can 
only be understood from the hyperelasticity point of view. We briefly note that analyses suggest 
that the critical instability speed can be approximated by Gao’s model of local limiting speed [7] in 
softening materials. These results together with detailed modeling will be discussed in a 
forthcoming publication [16].  

 

 
 

Figure 4: Dynamic crack tip instabilities 
harmonic system (subplot (a) shows potential 
energy indicating the crack surface by the red 

color), Subplot (b) shows the hoop stress in the 
harmonic systems, becoming bimodal just at the 

speed when the instability is observed. This 
observation is in perfect agreement with Yoffe’s 

prediction [1].  

 
 

Figure 5: Dynamic crack tip instabilities 
in (a) softening system and (b) stiffening 
system. The instability speed is changed 

dramatically dependent on the large-strain 
elastic properties. This result is important 
since is strong indication that the large-

strain elastic properties govern the 
instability dynamics! It is interesting to 

note that in the stiffening systems, cracks 
can move straight up to speeds close to the 

Rayleigh-wave speed according to our 
predictions. Further results will be 

presented in forthcoming publications 
[16].  

 
5. DISCUSSION AND CONCLUSIONS 

 
Our studies suggest that hyperelasticity plays a dominating role in the dynamics of 

cracks. The effect of nonlinearities close to the crack tip is two-fold: Firstly, it has strong impact 
on energy flow, and secondly, it governs the instability dynamics. Figure 6 shows the classical 
viewpoints of length scales around a dynamic crack tip, compared to the new picture featuring the 
energy length scale [11]. Our results suggest that the classical, linear elastic theories should be 
replaced by nonlinear theories of fracture in order to form a comprehensive picture of crack 
dynamics. 
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Figure 6: The characteristic energy length scale in 
dynamic fracture, in comparison with classical 

length scales. In the classical picture, there exist 
only the fracture process zone, the K dominance 

zone and the zone of large deformation 
(hyperelastic zone). With the new concept of the 
characteristic energy length scale χ, the relative 

importance of hyperelasticity becomes obvious: It 
dominates once the size of the hyperelastic zone 

approaches that of the characteristic energy length 
scale.  
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