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ABSTRACT 

The bonded-particle model for rock (BPM, Potyondy and Cundall [1]) is enhanced to include time-dependent 
behavior.  The BPM represents rock by a dense packing of non-uniform-sized circular or spherical particles 
that are bonded together at their contact points and whose mechanical behavior is simulated by the distinct-
element method.  Damage is represented explicitly as broken bonds, which form and coalesce into 
macroscopic fractures when load is applied.  This system mimics a cemented granular material of complex-
shaped grains in which both the grains and the cement are deformable and may break, and thus exhibits a rich 
set of emergent behaviors that correspond very well with those of real rock.  The enhanced model is called 
the Parallel-bonded Stress Corrosion model (PSC model, Potyondy [2]), because it mimics the stress-
dependent corrosion reaction that occurs in silicate rocks in the presence of water.  Force transmission 
through rock, and through a BPM, produces many sites of micro-tension, and it is postulated that stress-
corrosion reactions may be occurring at these sites.  The stress-corrosion process is implemented in the PSC 
model by removing bonding material at a specified rate at each parallel bond that is loaded above its micro-
activation stress, and chemical reaction rate theory is used to obtain a reasonable parameterization and stress 
dependence of the corrosive-front velocity — see Figure 1.  Global force redistribution occurs throughout the 
process, and parallel bonds are removed from the system either by breakage (when their strength is exceeded) 
or by complete bond dissolution (when 0D → ).  The three PSC model parameters can be chosen to match 
both the static-fatigue curve (time-to-failure versus applied load) and the damage mechanisms and 
deformation behavior (a creep curve showing primary, secondary and tertiary creep) of Lac du Bonnet 
granite.  The PSC model provides a consistent description of subcritical crack growth in rock that embraces 
both the microscopic processes of reactions and thermal activation at crack tips and the more mesoscopic 
processes of microcrack-microstructure-macrocrack interaction.  The fact that the PSC model bypasses the 
need to idealize the rock in the classical Linear Elastic Fracture Mechanics (LEFM) sense, yet can itself 
reproduce LEFM behavior, suggests that it may be a more general model of rock that more closely mimics 
the physical behavior mechanisms than does an LEFM material. 

 
Figure 1:  Primary mechanism implemented in the PSC model (v is a function of the maximum 

tensile stress acting on the bond periphery). 



1  INTRODUCTION 
Time-dependent weakening processes aided by water and other fluids occur in rock.  These 
processes are reviewed by Kirby and McCormick [3], and the following summary focusing on 
rock behavior in the brittle regime (herein defined as the pressure interval over which extension 
and shear fracturing and faulting occur) is taken from their review. 
     The effects of the time scale of load duration generally are revealed by the effects of strain rate 
on strength in constant strain rate tests and by the variation of strain rate with time at constant 
differential stress in creep tests.  Fundamentally, these time-dependent effects stem from the aid 
that thermal vibrations of atoms provide to deformation processes: the longer the duration of load, 
the greater the probability that a thermal vibration of sufficient amplitude to aid the deformation 
process will occur.  The time-dependent behavior of rock in the brittle regime depends strongly on 
the initial porosity with pore collapse and microcracking each contributing.  Low-porosity 
crystalline rocks exhibit a static-fatigue response.  Creep strains are produced by microcracking 
involving the extension of preexisting cracks and the production of new cracks. 
     The mechanism responsible for the time dependence of brittle creep is thought to be corrosion 
of crack tips by chemical hydration (stress corrosion), and creep rates are thought to be controlled 
by the rate of slow growth of tensile cracks.  At low strains, tensile cracks extend from stress 
concentrators (cracks, pores, grain boundaries, etc.), and the rates of growth decrease as the 
number of concentrators is exhausted by cracking, and thus creep rates decrease with increasing 
time in the hardening stage.  If the crack density exceeds some critical value such that cracks are 
close enough to interact on a large scale, crack coalescence occurs to form a macroscopic fracture 
on which failure occurs. 
     The PSC model mimics the time-dependent weakening process of stress corrosion.  The 
associated damage interactions that lead to macroscopic fracture formation are emergent 
properties of this model that arise from its implementation within a bonded-particle model for 
rock. 

 
2  FORMULATION 

Assume that time-dependent behavior of silicate rock in the brittle regime is controlled by a stress 
corrosion reaction (in which water attacks the Si-O bonds of the material in regions experiencing 
large stress-induced volumetric expansion), and that this reaction can be represented using 
reaction rate theory (Masel [4]) for which the reaction kinetics are embodied in the chemical 
reaction-rate equation (Lockner [5]): 
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where r  is reaction rate, or  and c  are constants, R  is the gas constant, T  is the absolute 
temperature, rsσ  is the reaction site stress, and and E ν∗ ∗  are apparent activation energy and 
activation volume, respectively.  Equation (1) states that an energetically favored reaction will 
progress at a rate determined by the rate of successful attempts to overcome an energy barrier 
represented by the activation energy.  In addition, if the reaction sites are stressed, the effective 
energy barrier is reduced by an amount rsν σ∗ . 
     The reaction site stress, rsσ , is difficult to quantify.  Most workers have idealized the system as 
an isotropic linear elastic material containing large cracks, measured crack growth rate, and related 
it to the stress intensity factor, IK , at the crack tip.  This will be referred to as the LEFM 
assumption.  Freiman [6] derives a model for stress-assisted crack propagation in glasses and 
ceramics based on a molecular model of stress-induced chemical reaction between vitreous silica 



and water (Michalske and Freiman [7]).  The model considers the materials to be ideally brittle 
(i.e., there are no zones of plastic deformation at propagating crack tips), and thus, fracture is 
governed by bond-breaking mechanisms.  The model is based on the premise that highly 
concentrated tensile stress fields exist at a crack tip.  Continuum approximations indicate that the 
bridging Si-O bond experiences strains > 20%.  The effect of this strain on the bonding molecular 
orbitals is not easy to predict but can be discussed in terms of a decrease in the overlap between 
atomic orbitals, thus increasing their availability for bonding with other species.  Freiman’s model 
assumes that crack velocity is directly proportional to reaction rate, and provides a theoretical 
basis for expressing crack velocity in the form ( )0 exp IV V bK=  by assuming that the tensile 
stress dependence of the reaction rate can be expressed as the negative of the pressure dependence 
such that the term rsν σ∗  in eqn. (1) is replaced by the term IbK , where ( ) 1 2b dν π −∗=  and d 
depends on the structure of the crack tip.  We use eqn. (1) to describe the reaction kinetics, and 
only set rs IbKν σ∗ =  when employing the LEFM assumption. 
     The BPM does not employ the LEFM assumption; instead, it mimics the mechanical behavior 
of a collection of grains joined by cement.  In the following discussion, we consider each grain as 
a BPM particle and each cement entity as a parallel bond.  Equation (1) is applied to the BPM by 
making the following assumptions. 

(a) The stress-corrosion reaction only affects the cement, it does not affect the grains; 
therefore, each parallel bond is a potential reaction site. 

(b) The reaction occurs at the bond surface, and removes bond material at a uniform rate that 
is proportional to the reaction rate in eqn. (1).  The rate of material removal is called the 
corrosion rate.  We can envision the removal process as an edge crack growing uniformly 
into the bond material along its periphery. 

(c) The corrosion rate is dependent on the stress at the reaction boundary, and this stress is 
taken as the maximum tensile stress acting on the bond periphery. 

(d) Corrosion only occurs when the local driving stress is tensile and above some threshold 
level. 

     We express the corrosion rate as the rate at which the parallel-bond diameter, D , decreases by 
(assumptions (a) and (b)): 
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where α  is the constant of proportionality between the corrosion rate and the reaction rate.  The 
reaction site stress is related to σ , the maximum tensile stress acting on the parallel bond 
periphery (assumption (c) above), and it is assumed that there is a threshold stress, aσ , below 
which the stress-corrosion reaction ceases (assumption (d) above), so that eqn. (2) can be 
expressed as 
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where σ  has been normalized by the parallel-bond tensile strength cσ . The PSC model is 
described in eqn. (3) by the rate at which the diameter, D , of each parallel bond decreases.  The 
variables are the maximum tensile stress acting on the bond periphery (σ ) and the elapsed time 
since bond formation ( t ).  The parameters are the two rate constants ( 1β , with units of velocity 
and the dimensionless constant 2β ), the micro-activation stress ( aσ ) and the parallel-bond tensile 
strength ( cσ ).  The two rate constants are related to the reaction-rate parameters in eqn. (1) by 



 
( )1

2

exp

.

c
o

c rs

r e E RT

RT

β α

σ ν σβ
σ

∗

∗

= −

  =   
  

 (4) 

 
3  IMPLEMENTATION 

The PSC model introduces a time-dependent behavior into the BPM, thereby making it necessary 
to simulate the advancement of time in order to reduce the parallel-bond diameters by integrating 
eqn. (3).  Two separate accumulated times are maintained, one for the particle assembly and 
another for the stress-corrosion model.  During a stress-corrosion simulation, the BPM provides 
the force and moment distributions corresponding with a series of static-equilibrium states 
between which the parallel-bond diameters are reduced.  If the BPM is run with high numerical 
damping, then quasi-static conditions are approximated at all times; however, if the BPM is run 
with low numerical damping, then seismic source information can be obtained during the cracking 
episodes (Hazzard and Young [8]) that occur during the force-redistribution following the parallel-
bond diameter reductions. 
     The following three-step procedure allows one to simulate the time evolution of a particle 
assembly undergoing stress corrosion.  The simulation proceeds until either (1) the desired stress-
corrosion time is reached, (2) the system fails (i.e., a static-equilibrium state cannot be obtained 
for the current loading) or (3) the maximum tensile stresses acting on the periphery of all parallel 
bonds are below the respective micro-activation stresses indicating that, for the current loading, no 
further stress-corrosion damage will occur. 

1. Cycle the BPM until a state of static equilibrium has been obtained.  Equilibrium is 
determined based on the user-specified equilibrium ratio limit, rf , expressed as the ratio 
of maximum unbalanced force magnitude over all particles divided by average applied 
force magnitude over all particles.  After each increment of stress-corrosion time, the 
model is cycled until this ratio falls below rf . 

2. For a given stress-corrosion timestep, reduce the diameters of all parallel bonds by 
integrating eqn. (3). 

3. Return to step 1. 
   While stress corrosion is active, there are two means by which parallel bonds are removed from 
the system.  Either the bond tensile ( cσ ) or shear ( cτ ) strength is exceeded causing the bond to 
break, or the bond diameter falls below a minimum allowable value (typically taken as 1% of the 
original bond diameter).  The bond-dissolution mechanism can occur when diameter reduction and 
subsequent force redistribution maintain the condition:  and a c cσ σ σ τ τ≤ < < .  Such is the case 
for a two-particle system carrying a pure tensile load and subjected to fixed-displacement 
conditions.  Such stable bond-dissolution processes also occur in synthetic specimens subjected to 
static-fatigue loading, suggesting a difference in the damage fabric that develops during long- and 
short-term loading conditions. 
   During a stress-corrosion simulation, the stress-corrosion timestep, t∆ , can be kept constant at a 
specified value or chosen automatically using the following procedure, which varies t∆  in 
response to system behavior such that the timestep decreases during periods of rapid damage 
accumulation and increases during periods of relative quiescence.  This self-adaptive procedure is 
necessary to simulate most systems within a reasonable number of steps.  The elapsed time to the 
first parallel bond failure, ft , is estimated by assuming that parallel-bond forces and moments are 
constant during the increment.  The timestep is taken as 



 ( )1 s ft n t∆ =  (5) 
where sn  is the number of steps until the first parallel bond breaks (assuming a perfect estimate).  
We define a subinterval as the sequence of timesteps that occur from the time of estimation until 
the first parallel bond actually breaks.  The subinterval ends when at least one parallel bond has 
broken.  A new estimate using eqn. (5) is made at the start of each subinterval.  To prevent large 
numbers of small steps being taken during a subinterval, the timestep is multiplied by a factor, sf  

( )1.0sf > , after every sn  steps of the subinterval. 
     Both the accuracy and the execution speed of the stress-corrosion procedure are controlled by 
the algorithm-control parameters rf , sn  and sf .  The best accuracy is obtained when 0rf →  and 

0t∆ → .  Typically rf  is set equal to a small value on the order of 510− , and the timestep is 
chosen automatically with 2sn =  and 2.0sf = .  For particular boundary-value simulations, it is 
necessary to determine the effect of these algorithm-control parameters on system response.  Both 
two- and three-dimensional static-fatigue simulations indicate that the size of the stress-corrosion 
timestep affects the macroscopic time to failure.  As 0t∆ → , the true macroscopic time to failure 
is approached from above. 
 

4  COMPARISON WITH LEFM-BASED MODELS 
The PSC model is compared with LEFM-based models of subcritical crack growth as follows.  
The LEFM-based models (Kemeny [9]; Kemeny and Cook [10]; Lockner and Madden [11]; Okui 
and Horii [12,13]) postulate an initial collection of cracks, and then grow these cracks at a velocity 
that is a function of stress-intensity factor ( ,n

thV AK K K= ≥ ), where thK  is the stress-corrosion 
threshold.  The PSC model postulates an initial collection of grains joined by cement, and then 
removes the cement at a rate that is a function of local maximum tensile stress 
( ( )2
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levels of “cracks” in the PSC model.  At the micro-level, a crack exists in each parallel bond as 
soon as its diameter begins to be reduced (see assumption (b) above), at the meso-level, a crack 
exists as a single broken or fully dissolved parallel bond, and at the macro-level, a crack exists as a 
contiguous collection of broken or fully dissolved bonds.  As the length of such a macrocrack 
becomes large relative to the particle size, the conditions at its tip become well characterized by 
LEFM assumptions.  In the LEFM-based models, the macrocrack velocity, V, is an indirect input 
parameter (based on A and n), whereas in the PSC model, the microcrack velocity (or corrosion 
rate) is an indirect input parameter (based on 1β  and 2β ) and the macrocrack velocity is an 
emergent property.  Potyondy and Cundall [1] demonstrate a formal equivalence between the 
mechanisms and parameters of the BPM and the concepts and equations of LEFM.  These 
relations can be used to show that the macrocrack velocity of the PSC model can be expressed in 
the form ( )0 exp IV V bK= .  This is the same form as Freiman’s model, and thus, justifies the use 
of eqn. (3) to express the corrosion rate of each parallel bond. 
 

5  CONCLUSIONS 
The PSC model can be calibrated by matching 1) the time-to-failure curve produced by 
performing a series of static-fatigue tests, 2) the loading-rate dependence of compression 
strengths, or 3) the velocity versus stress-intensity factor curve of a single macroscopic fracture 
subjected to pure mode-I tension.  The first calibration procedure has been performed for both the 
two- and three-dimensional models.  During a static-fatigue test, the axial load and confinement 



are held constant, and both the time-dependent deformation and possible time to failure are 
measured.  The three PSC model parameters can be chosen to match the static-fatigue curve (time-
to-failure versus applied load) for Lac du Bonnet granite.  Also, the synthetic material exhibits 
damage mechanisms and deformation behavior that are similar to those of the rock.  The response 
is characterized by a creep curve, whereby the axial strain increases with time, and the response 
can be divided into the three stages of primary, secondary and tertiary creep. 
     The PSC model could be used to better understand the time-dependent weakening processes 
that occur in rock by matching quantitatively the response of a specific rock undergoing the three 
loading regimes described above.  Achieving such a match may require modification of eqn. (3) 
and a more realistic replication of the rock microstructure than has been done to date 
(predominantly only dense packings of near-uniform particle size distributions have been 
employed).  Also, further insight may be gained by relating the macroscopic response to the 
thermodynamic quantities in eqn. (4).  The PSC model is a comprehensive rock model that 
consistently combines processes occurring over a range of spatial and temporal scales.  One 
application of such a model is to better understand the long-term damage processes that occur 
around an excavation (of say, a nuclear waste emplacement) to aid in the prediction of excavation 
stability and long-term strength for times up to and beyond 10,000 years. 
 

6  REFERENCES 
1. Potyondy, D.O, and P.A. Cundall, A bonded-particle model for rock, to appear in Int. J. Rock 

Mech. Min. Sci. & Geomech. Abstr. 
2. Potyondy, D.O., Simulating stress corrosion with a bonded-particle model for rock, to be 

submitted to J. Geophys. Res. 
3. Kirby, S. H., and J. W. McCormick, Inelastic properties of rocks and minerals: strength and 

rheology, in Section III of Practical handbook of physical properties of rocks and minerals, 
pp. 178–297, ed. R. S. Carmichael, Boca Raton, Florida, CRC Press, 1989. 

4. Masel, R. I., Chemical kinetics and catalysis, Wiley, New York, 2001. 
5. Lockner, D., A generalized law for brittle deformation of westerly granite,  J. Geophys. Res., 

103(B3), 5107–5123, 1998. 
6. Freiman, S. W., Effects of chemical environments on slow crack growth in glasses and 

ceramics, J. Geophys. Res., 89(B6), 4072–4076, 1984. 
7. Michalske, T. A., and S. W. Freiman, A molecular interpretation of stress corrosion in silica, 

Nature, 295, 511–512, 1982. 
8. Hazzard, J. F., and R. P. Young, Simulating acoustic emissions in bonded-particle models of 

rock, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 37, 867–872, 2000. 
9. Kemeny, J. M., A model for non-linear rock deformation under compression due to sub-

critical crack growth, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 28(6), 459–467, 1991. 
10. Kemeny, J. M., and N. G. W. Cook, Micromechanics of deformation in rocks, in Toughening 

mechanisms in quasi-brittle materials, 155–188, edited by S. P. Shaw, Kluwer Academic 
Publishers, Dordrecht, 1991. 

11. Lockner, D. A., and T. R. Madden, A multiple-crack model of brittle fracture, 2, time-
dependent simulations, J. Geophys. Res., 96, 19643–19654, 1991. 

12. Okui, Y., and H. Horii, A micromechanics-based continuum theory for microcracking 
localization of rocks under compression, in Continuum models for materials with 
microstructure, 27–68, edited by H. B. Mühlhaus, John Wiley & Sons, New York, 1995. 

13. Okui, Y. and H. Horii, Stress and time-dependent failure of brittle rocks under compression: a 
theoretical prediction, J. Geophys. Res., 102(B7), 14869–14881, 1997. 


