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ABSTRACT
Traditionally, most aircraft components are designed according to two different philosophies: the Fail-Safe
and Damage Tolerance approach. Both concepts cover a different part of the lifetime and are based on so-
called deterministic models, in which the model parameters are constants (single-valued). In order to
compensate for neglecting the natural variability of the model parameters (e.g. scatter in material parameters)
and other uncertainties scatter and safety factors are applied explicitly and implicitly (e.g. by means of an
assumed initial crack length). The results obtained with both approaches can be very conservative, although
the reliability of the design remains unknown.

Another better way of dealing with this variability of the model parameters is by means of a stochastic
analysis, adding an extra dimension to the deterministic analysis, by introducing a range of values that can
occur with their chance on occurrence. However, performing a stochastic Damage Tolerance or Durability
analysis does not make much sense, since the most important stochastic parameter, initial crack length
distribution, is unknown.

In this paper, an alternative life approach will be presented by which the lifetime and inspection scheme
of a component can be determined in a fully stochastic manner, covering the crack initiation period as well as
the crack growth period in a realistic way. The approach can serve as an alternative for the currently
approaches, especially the Safe-Life and Damage Tolerance approaches, resulting in more realistic
predictions of the lifetime and inspection scheme. The method is demonstrated by a realistic example in
Grooteman [1].

1  ALTERNATIVE STOCHASTIC LIFE APPROACH (SLAP)
During development of the Damage Tolerance approach it was realised that defining an initial
crack length ai that is based on pre-service inspection would give very conservative results. This
realisation led to the concept of Equivalent Initial Flaw Sizes (EIFS) for making crack growth
calculations from the start of service to failure. EIFS are substitutes for any real (and unknown)
initial damage in the structure. The problem is that EIFS values and distributions are obtained by
back-calculation, using macrocrack growth models, from the life distributions (varying) and
critical crack length (fixed) of similar components. The macrocrack growth models are unable to
describe the real behaviour and size distributions of cracks that grow from any (small) initial
damage. The resulting EIFS distribution therefore lacks any relation with reality, and more
important, cannot be verified afterwards.

Instead of starting the life analysis at the start of the service life, another approach is to start
the analysis at the end of the service life by constructing the failure distribution. This distribution
(unlike to the EIFS distribution) can be verified afterwards using inspection data that becomes
available during the service life as will be demonstrated in this paper. In the design stage this
distribution will be unknown, but with a limited number of tests and experience from the past a
conservative lower bound can be generated (Dodson [2]). Based on this distribution a conservative
estimate of the inspection scheme can be obtained guaranteeing the required safety level.



In order to subsequently reduce the inspection effort, the obtained conservative failure
distribution has to be updated when service life information (failure and non-failure data) becomes
available. Even before reaching the initial inspection the current service lives of the various
components can be used to obtain an improved estimate of the failure distribution and
subsequently the inspection scheme, thereby reducing the conservatism of the approach. In this
way an adaptive scheme can be constructed leading to a minimal inspection effort for the required
safety level.

These considerations led to the following alternative fully stochastic life approach called
SLAP (Stochastic Life APproach). The approach, presented in Figures 1–5, enables the lifetime
and inspection scheme of a structural component to be determined and covers both the crack
initiation and growth periods realistically, i.e. without the need for EIFS values and distributions.
The approach consists of the following three steps:
1.  Construct the failure distribution
2.  Backward crack growth analyses
3.  Forward crack growth analyses, including inspections.

The basic methodology pertaining to these steps will be discussed next. Grooteman [1] gives
more details, discussing the approach for a realistic application.

Step 1: Construct the failure distribution
First, the failure distribution has to be obtained, e.g. by means of a Weibull analysis, see figure 1.
The initial failure distribution should be a conservative estimate (lower bound) based on a limited
set of test data, and should be updated during the lifetime of the component by service data
(failures and non-failures) as they become available, to improve safety. For more details the reader
is referred to Grooteman [1] and Dodson [2].

An important concept is that the scatter introduced by material properties, load spectrum,
etc., is included, de facto, in this one failure distribution, and therefore need not be characterised
separately. Moreover, an estimate of the scatter present in the components can be updated easily
by using information from service. This is a very important advantage over using the variability of
all the analysis parameters, since this information is often hard to acquire, if at all. Furthermore, a
limited number of random variables is a very attractive concept, especially for engineering use.

Figure 1: Step 1 of the SLAP philosophy



Step 2: Backward crack growth analyses: Determine initial inspection time and corresponding
crack length distribution
a) Back-calculations are done starting from the failure distribution of the component. However,

these back-calculations are not extrapolated to time zero, as in the EIFS approach, but only
until a detectable crack length has been reached, adet in figure 2: this is comparable to the first
stage of back-calculation using the Damage Tolerance philosophy. The resulting distribution
(PDF-adet in figure 2) corresponds to an estimate of the distribution which describes the time
it takes for cracks of length adet to become present in a certain percentage of the components.
N.B.: the individual back-calculations are deterministic, since all the variability is included in
the failure distribution. In Grooteman [1] it is demonstrated that an optimal choice of adet can
be found by analysing values in the range covered by the POD distribution.

Figure 2: Step 2a of the SLAP philosophy

b) When a certain threshold percentage (pth, e.g. 0.1 %, Fig. 3) of these detectable cracks
becomes present, the initial (threshold) inspection becomes timely. An inspection before pth is
unfeasible, since any cracks would be difficult to find with a reasonable chance of detection.
Determining the initial inspection tinitial in this way results in a realistically conservative
estimate that automatically covers the crack initiation, micro- and short-crack periods, without
the need to model them. This is a great advantage, since there are no well-established
engineering models for fatigue crack initiation and microcrack growth, and even the
modelling of short crack growth in real structures is also problematical. (N.B.: short crack
models are not required because current in-service inspection techniques cannot detect cracks
reliably at sizes below 1-2 mm, which is beyond the short crack regime.)



Figure 3: Step 2b of the SLAP philosophy

c) The crack length distribution function (PDF-tinitial in figure 4) at tinitial can be obtained at the
same time as in b), by extrapolating all the back-calculations down to tinitial. As before, there is
no need for crack initiation and micro- and short-crack growth models. For short cracks this
might not be completely true when considering the lower tail of the PDF-tinitial distribution.
However, this part of the PDF will not contribute to the probability of failure, discussed in the
next step, and is therefore irrelevant here.

Figure 4: Step 2c of the SLAP philosophy



Step 3: Forward crack growth analyses including inspections: Determine repeat inspections
In the third and last step a stochastic forward crack growth analysis is performed, starting from the
time tinitial and the crack distribution (PDF-tinitial in figure 5). During this analysis a repeat
inspection scheme (denoted by the crosses in the figure) is simulated by using the Probability Of
Detection (POD) function appropriate to the applied inspection method (see Grooteman [1] for
details on the POD).  As before, the individual crack growth calculations are deterministic.

Once a crack has been "found" by a crack growth analysis, the component is assumed to be
replaced (or repaired). There will then be another period tinitial in which a new crack will initiate
and grow. Starting from the end of this period, a crack growth analysis can be done using a new
crack length value drawn from the crack length distribution function (PDF- tinitial). However, it can
often be assumed that a replaced or repaired component will survive until the economic life of the
overall structure is reached, since this will normally be less than twice the crack initiation period.

Figure 5: Schematic overview of the SLAP philosophy

Each crack growth calculation stops when the component has failed, when cracks have been
shown to be non-detectable by all inspections, or when the economic lifetime of the component
has been reached, depicted by teconomic in figure 5.

Performing many of these crack growth calculations (of which two examples are shown in
figure 5) finally results in a Probability Of Failure (POF) value, with the number of calculations
depending on the stochastic method applied. This POF value can be compared with the required
safety level, and if unsatisfactory the calculations can be redone with different repeat inspection
schemes. Similarly, POF values can be obtained for different inspection methods and repeat
inspection schemes until the required safety level is attained. Also, one can choose between fixed-
interval or variable-interval repeat inspection schemes. If necessary, all these possibilities can be
investigated in order to determine an optimum inspection scheme.
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