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ABSTRACT
We show by computer simulations that acoustic emission fiteencrack tip strongly reduces the delivery of
fracture work, due to the coupling between the crack speddtanacoustic branches in dispersive media. The
direct consequence is a selection criterion for the terheirsak speed which, for planar cracks, produces results
corresponding to those found in experiments on highly aropec materials. In case of isotropic material with
cracks of unrestricted geometry, the drop in the crack spetidrespect to the planar case is connected to a
mechanism of attempted branching, which is also respanfibithe logarithmic roughness of the final fracture
for marginal loadings. Higher loadings lead to a well definedghness exponent @f~ 0.45 compatible
with that measured experimentally at short length scaled,ia our simulations clearly connected with the
generation of macroscopic branches.

1 INTRODUCTION
Acoustic emission is commonly used to analyze the precsidracture, exploiting the possibility
to determine the location, frequency and energy of micabfréng events. Less common is the
analysis of acoustic emission from moving cracks becausgilgy a crack and measuring the energy
involved is better achieved by different methods. An inéirey aspect of the acoustic emission in
dynamic fracture is that this phenomenon is only partiadlyered by continuum theory. Continuous
media support the propagation of waves travelling at theaataristic sound speesisandyv; of the
longitudinal and transversal acoustic modes, and at théeRyspeedir for surface waves. The
prediction of the continuum theory for the terminal cracleep is that a crack never exceegs
[1]. Up to that speed, it describes an advancing crack as tncmus deformation of the medium
and no sound emission is expected because there can be Himgdagiween the crack speed and
sound waves. Experiments in both real materials and sifonkbevertheless show intense acoustic
emission [2, 3], which cannot be directly accounted for ia tontinuum limit. This emission can
be understood as a consequence of discreteness which igsghnesent in real materials (and in
simulations) and is masked in the theory by the continuunncgah [4]. In the following we show
that such acoustic emission influences the amount of endrgynwgoes into fracture work depending
on the crack speed. This leads to a speed selection criferianack propagation and influences the
scaling of the final surface.

2 DISCRETENESS AND ENERGY RELEASE RATE
In presence of discreteness and hence of acoustic emigemmacroscopic energy release rate
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Figure 1: Schematic representation of the basic phenoménperiodic lattice generates a periodic
acoustic band structure. A crack advancing at some speeatches such periodic band structure
at points A, B, C, and D in the example shown, emitting wavablatorresponding frequencies
and wavevectork,. Resonant emission is found in D: in this case the crack spatsh matches the
group velocitydw/dky of emitted waves.

provided by the continuum theory corresponds to the sum ofdistinct contributions [4]:
Gwm (V7t) = be(v7t) + Gph(V,t). (1)

HereGu (v,t) is the solution of the continuum limit which governs the dety of energy towards
the crack tip and hence represents the enargjlableat the crack tip at a given time Gy (Vv,t)

is the actuabreakageenergy release rate, or the portion of the available enefgghneffectively
goes locally into fracture work, whilss,n(v;t), thephononenergy release rate, is the portion of the
available energy which is radiated as acoustic emissBa(v,t) can be obtained from the continuum
theory for a given (computer) experimental setup, wi@ig{v,t) can be measured in simulations by
fixing the crack speed and measuring the resulting fractor&w

We have introduced a novel finite element model which perfais three-dimensional sim-
ulations and is amenable of explicit analytical treatenjéht The scheme adopted introduces a
discretization of the continuum elastodynamic equationsiging an fcc lattice of massive sites.
The lattice geometry is then reflected in the acoustic ptaseof the material in that the materials
is dispersive, and influences the behaviour of the energgpselrate.

By a series of computer simulations we measured the breaaggy release raty(v,t) for a
planar crack, in the special case of a strip geometry withdftkeplacements at the top and bottom
boundaries. In this case the total available macroscoaatdre energm (v,t) is independent of
the crack speed [1] and, for cracks longer than the heightetample, all energy release rates of
eq. (1) are time independent, so that we@gt= Gpr(V) + Gpn(v). Although the macroscopic energy
release rate is independent of the crack speed, our simngahow that the breakage energy release
rate does depend on the crack speed. Such speed dependancenisequence of the coupling
between the crack speed and the acoustic emission via thistacdispersion relations. Figure 1
describes the basic phenomenon. At any crack speedir the moving tip emits sound waves
at the frequency and wavevector of the corresponding ptrth#coustic modes. In particular, for
some special speeds we have resonant emission when thedeméves travel at the same speed
as the crack itself, leading to an increase of the energwatedlinto phonons. This in turn leads
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Figure 2: The continuous line shows the speed dependendgaidrecy. Filled circles correspond
to simulations of planar crack in a disordered medium fofedént loadings. The topmost point
corresponds to the lowest loading and vice-versa: inangahie loading leads to an increase in the
terminal crack speed. Empty circles correspond to simanatbdf non-planar cracks in a disordered
medium; the reduced crack speed is associated with craoktiray.

to a decrease in the energy going into fracture work and thpkias the speed dependence of the
breakage energy release rate.

The relationship between the microscopic breakage en&lgase rate and the macroscopic
energy release rate is better expressed by introducingfficeency Ev):

Gor(V;t) = E(V)Gu(Wt) )

In the fixed grip setup discussed above, this giBggv) = E(v)Gy;, so that the efficiency becomes
the sole source of velocity dependence. We have shown [#Ehg only depends on the lattice
geometry and crack speed, being local to the crack tip anglittdependent on the macroscopic
dynamical regime which instead is generally describe®gyv,t).

3 CRACK SPEED AND ROUGHNESS EXPONENT
The translation of the standard Griffith criterion in thenfirawork of eq. (1) is that a crack will
advance only whey(v,t) exceeds a threshold value connected with the toughness ofaterial.
In the fixed grip setup discussed above, this translatesaititweshold for the efficienci(v). For
a given threshold value fdE(v) the possible crack speeds are directly obtained by lookints a
speed dependence in fig. 2, and simple stability argumerefd]s to the conclusion that stable
crack propagation is only possible whEfv) is a decreasing function of the crack speed.

We have performed numerical simulations of moving crackéxigg the threshold and varying
the applied loading. In figure 2 full circles correspond tagiations of planar cracks in a disordered
medium for different loadings: all points fall on the effin@y curve. Furthermore, for low loadings
(correspondingin the figure to high valuesd#)) the crack speed is fully compatible with the value
measured in highly anisotropic materials [5, 6]. Emptyleiscshow the results on the terminal crack
speed for nonplanar cracks, when out of plane breakageigedl. We have verified [7] that the drop
in crack speed, with respect to the planar case, is direotipected with a mechanism aftempted
branching when new branches try to open. In this situation, not allehergy is used to have the
crack advance, and the crack slows down. On the other haménirgy available is insufficient to
initiate macroscopic branches, and the resulting topolsgpmpatible with a logarithmic scaling,
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Figure 3: The height-height correlation function of the Fiilnacture surface for increasing loadings.
The highest curves have a slope similar to the reference €lep0.45 shown by the continuous
line. The lowest curves correspond to the lowest loadingte that they deviate from the reference
slope. It can be shown that for such loadings the scalingeo$thiface is logarithmic [4].

found in experiments of marginal loading [8] and in thear&tcalculations [9, 10]. Only for higher
loadings does the roughness expongmjrow to values of¢ ~ 0.45 (see fig. 3) found in many
experiments [11, 12, 13], and this is connected with the apgree of macroscopic branches in our
simulations.

4 CONCLUSIONS
We have shown that acoustic emission for a moving cracks heesagurable effect on the dynamics,
introducing a selection criterion for the crack speed whichthe case of a strip geometry with
fixed displacement at the boundaries, is missing in the goath theory. The introduction of the
efficiencyE(v) provides a way to predict the terminal crack speed in anyit@adonfiguration, at
least given a preferred direction for crack propagation, gimes results comparable to experiments
in the setup investigated. The departure from this preghatihen a preferred direction is missing, is
connected to microbranching which is responsible for tigatithmic scaling at marginal loadings.
The well defined roughness exponémt- 0.45 is connected in our simulations to the growth to
macroscopic sizes of such branches and is possible onlygbehloadings.
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