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ABSTRACT

The three-dimensional problem of a transversely isotropic piezoelectric material with an embedded elliptic
crack parallel to the material plane of isotropy is solved using an integral equation method developed earlier
to solve similar problems in isotropic homogeneous elastic materials. The field equations of such medium
reduce to four simultaneous partial differential equations of second order with the three displacement
components and an electric potential as the basic unknowns. These partial differential equations reduce to
four quasi-harmonic equations in terms of newly introduced potential functions. For the elliptic crack loaded
normally with mechanical and electric loads, the mixed boundary conditions reduce the four quasi-harmonic
equations to a pair of coupled integral equations — the coupling being between the normal displacement
component and the electric potential function. A series of transformations together with Fourier expansions
of the known and unknown fields reduce the coupled pair of integral equations to four infinite systems of
Fredholm integral equations of the second kind. For constant mechanical and electric load closed form
analytical solutions are obtained for the displacement and electric potentials. The solutions reveal an
extremely complicated coupling between the mechanical and electric variables. The method of solution will
enable one to investigate further into the fracture behavior of piezoelectric materials with main crack
interacting with neighboring micro-cracks and excited not only with static loads but also with time-dependent
loads. Various other problems of piezoelectric materials, e.g. vibration problems, contact problems, etc. could
also be solved by this method.

1 INTRODUCTION

Piezoelectric materials have become preferred materials for a wide variety of electronic and
mechatronic devices, e.g. actuators, sensors, sonar projectors, medical ultrasonic imaging
applications, etc., due to their pronounced piezoelectric, dielectric and pyroelectric properties. This
has increased the demand for advanced piezoelectric materials with high strength, high toughness,
low thermal expansion coefficient and low dielectric constants. Piezoelectric ceramics is a kind of
transversely isotropic piezoelectric material, which is adopted extensively owing to its fine
piezoelectric performance. However piezoelectric ceramics are brittle and stress concentration
caused by mechanical or electric loads during operation may lead to crack initiation and extension
leading to failure of the components. In fact piezoelectric ceramics often possess various defects
such as microcracks, microvoids, inclusions, etc., which cause geometric, electric, thermal and
mechanical discontinuities and thus induce high stress and/or electric field concentrations, which
may induce crack initiation, crack growth, partial discharge, and cause dielectric breakdown,
fracture and failure. Due to the importance of the reliability of these devices, recently there has
been tremendous interest among the scientific community in studying the fracture and failure
behavior of such materials ( Zhang et al. [1]; Zhang and Gao [2] ).

To improve the performance and predict the reliable service life-time of piezoelectric
components, it is necessary to analyze theoretically and describe quantitatively the damage and
fracture processes taking place in piezoelectric materials according to the view point of coupled
mechanical and electric effects. Over the last 15 years researchers have paid much attention to this
field, especially with reference to piezoelectric ceramics. In the study of piezoelectric fractures
and failures, the general trend is to extend the available solutions in purely elastic media to the
corresponding problems in piezoelectric materials. Parton [3] probably pioneered the research in
this direction by addressing the fracture problem of a through crack in a piezoelectric material.



Most available theoretical works are concerned with the two-dimensional study of cracks in
piezoelectric materials. For details see the review of Zhang and Gao [2].

However piezoelectric elements in practical applications often possesses distinct geometric
shapes and cracks in piezoelectric media may often be simulated as three-dimensional cracks, e.g.
penny-shaped or elliptically-shaped. Hence it is essential to analyze the behavior of three-
dimensional cracks in piezoelectric materials concerned with the coupled mechanical and electric
effects. There are comparatively few works of three-dimensional analysis. Problems of penny-
shaped cracks in transversely isotropic piezoelectric media were considered by Huang [4], Chen
and Shioya [5], Kogan et al.[9] etc. But in practical situation three-dimensional cracks may be
simulated more accurately by an elliptic crack. Hence effort is necessary to investigate the
problems of elliptic cracks in piezoelectric materials to get a better picture of the fracture process
in such materials so that the advantages of piezoelectric materials may be utilized to a greater
extent. Available literatures on problems of elliptic crack in piezoelectric materials are those of
Wang [6], Zi-kun and Shang-Heng [7] and Chao and Huang [8].

In earlier analysis of elliptic crack in piezoelectric material we find that either solutions are
obtained as limiting case of an ellipsoidal cavity or ellipsoidal coordinate system has been used to
obtain the solutions. But it may be noted that ellipsoidal coordinates are not suitable for
considering finite mediums where Cartesian coordinates are more suitable. Also it is desirable to
obtain the results directly instead of going to the limiting process of ellipsoidal cavity or inclusion.
Further, one may expect a general method, which can take into consideration the effect of
additional boundaries of a finite medium as well as the effect of nearby microcracks. Recently an
integral equation method, has been developed by Roy and Chatterjee [10] to consider such
problems in purely elastic homogeneous isotropic medium. The same method has been adopted to
solve the title problem. Zi-kun and Shang-Heng [7] have shown that the field equations of
transversely isotropic piezoelectric medium reduce to four simultaneous partial differential
equations of second order with three displacement components and an electric potential as the
basic unknowns which further reduce to four quasi-harmonic equations in term of newly
introduced potential functions. Suitable solutions of the quasi-harmonic equations are available in
term of Fourier inverse transform (Rahman [11]). The mixed boundary conditions then reduce the
problem to a pair of coupled integral equations — the coupling being between the normal
displacement component and the electric potential function. Then the method of Roy and
Chatterjee [10] has been followed to reduce the coupled integral equations to four infinite systems
of Fredholm integral equation of the second kind. For constant mechanical and electric load closed
form analytical solutions are obtained for the displacement and electric potentials. The method is
not only suitable for three-dimensional crack problems but also may be applied to various other
problems of piezoelectric materials e.g. vibration problems, contact problems, etc.

2 POTENTIAL REPRESENTATION FOR TRANSVERSELY ISOTROPIC
PIEZOELECTRIC MEDIUM
The equilibrium equations of three-dimensional piezoelectric medium are

c,, =0, (1)

y

D, =0, @)
where O ; are stress components and D, are electric displacement components.

The piezoelectric stress constitutive relations are given by the following equations:

Oy = Cou€u — by (€))
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where g, are strain components, £, are electric field components, Cyy are elastic stiffness

constants, €,, are piezoelectric constants and ¢, are dielectric constants.

The strain-displacement relations and the electric field-potential relations are given by
1
€y = E(Mt,j Uy, )’ ®)

E =4, (6)

where u; are the displacement components and @ is the electric potential. In equations (1) to (6)
i,j,k,l=123.

Now, for a transversely isotropic piezoelectric medium, introducing a Cartesian coordinate

system (x, ¥, Z) with the xOy -plane embedded in coincidence with the plane of isotropy of the

medium and the z -axis perpendicular to it one can obtain the four quasi-harmonic equations
following Zi-kun and Shang-Heng [7] in terms of 10 independent constants — 5 elastic, 2 dielectric
and 3 piezoelectric, given below:
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where ¥, ¥,, ¥, are three potential functions corresponding to the three roots s,S,,5;

respectively of the cubic equation
As® +Bs* +Cs+D =0, (8)
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Then the general solutions of the field equations in terms of these potentials are
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where k,, and k,, (j =12.3) are the three values each of k, and k, corresponding to the
three roots s ( j= 1,2,3) of the equation (8) and
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3 FREDHOLM’S INTEGRAL EQUATION OF THE SECOND KIND
The elliptic crack is assumed to lie in the x(Oy -plane with the crack center coinciding with the

origin of the Cartesian coordinate system and occupying the region
2 2

S:+2 <1, z=0. (20)

A pair of mechanical loads of identical magnitude p(x,)) and in opposite directions as well

as an electric load g(x, ) is applied on the upper and lower surface of the crack.
The mixed boundary conditions are as follows:

o.(x,y0)=0_(x0)=0  V(x,y), @1
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Because of symmetry it is sufficient to restrict attention to one half-space only, say, z > 0. Then
a suitable solution of equation (7) satisfying the conditions at infinity is given by (Rahman [11])

X, (x,y,z) = i I I(P, Q,R,T)(.f,n)exp[— i(ﬁx + ny)— mjz]dé‘dn, (25)
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where m =,li§2+7]2 i+sj . (26)

Now assuming the unknown crack face displacement to be W(x,y) and the unknown electric

YV(x,y) €S, (22)
and,

V(x,y)eS. (23)

potential on the crack face to be D(x, ), V(x,y) € S, and applying the boundary conditions
following Roy and Chatterjee [10] one can obtain the following pair of coupled integral equations:
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Following Roy and Chatterjee [10] again, the coupled integral equations reduces to four infinite
systems of Fredholm integral equation of the second kind written in matrix form as follows:
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where ¥, (.)and ?n() are respectively Abel’s transform potentials to the Fourier cosine and
sine components of the unknown displacement function W(x,y)and @ (.)and ®_n() are

similar terms for the unknown electric potential @(x,y). Also p (.)and ;5() are Fourier



cosine and sine components of p(x,y) and ¢ (.)and as() are similar terms for

q(x, y) respectively.

4 SOLUTIONS FOR UNIFORM LOADING
We consider the case of constant mechanical and uniform electric loading, although solutions
could be obtained for any type of polynomial loading. Thus in the present analysis we consider

p(x,y) = p (constant), and ¢g(x, y) = g (constant). (35)

Then equation (31) reduces to the following finite system:
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The solutions reveal that not only the material and electric constants are coupled in a complicated
way but the solutions also depend on the coupled effect of the prescribed mechanical and electric
loads.

In conclusion we say that the present integral equation method may be applied to such
problems in finite media, dynamic crack problems, crack interaction problems and other problems
of piezoelectric media e.g. vibration problems, contact problems, etc.
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