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ABSTRACT

The three-dimensional M —integral is presented for calculating stress intensity factors for an
interface crack between two fiber reinforced materials which are treated effectively as trans-
versely isotropic materials. The material in the upper half-space is in the +45°-direction,
whereas the material in the lower half-space is in the —45°-direction. An interface crack in
this material possesses oscillatory and square-root singularities.

A test case of a three-dimensional bimaterial slab containing an edge interface crack is
described. The first term of the asymptotic displacement field is applied with the complex
stress intensity factor K = 0 and mode II stress intensity factor Kjr = 1 on the outer
boundaries of the body. The crack faces are traction free. Solution to this problem, should
be precisely the imposed stress intensity factor. Excellent results are obtained. Other test
problems, not presented here, also produce excellent results.

1 INTRODUCTION

The three-dimensional M —integral is extended here for an interface between two fiber rein-
forced materials which are treated effectively to be transversely isotropic. The material in
the upper half-space has fibers in the +45°-direction; whereas in the lower material, they
are in the —45°-direction (see Fig. 1). It is assumed that the interface crack is along the
x1—axis, the crack front is along the z3—axis and the materials are symmetric with respect
to the z» = 0 plane.

The two-dimensional M —integral for obtaining stress intensity factors for an interface
crack between two isotropic materials was first presented by Wang and Yau [1]. It was
extended to three-dimensions by Nakamura and Parks [2]. Of course, for that derivation,
they required an extension of the J—integral for three dimensions which may be found in
Li, et al. [3] and Shih, et al. [4]. Other applications of the M —integral were presented by
Charalambides and Zhang [5] for an interface crack between two orthotropic materials when
crack and material coordinates coincide and Banks-Sills and Boniface [6] for two transversely
isotropic materials similar to the material treated in this study, but when the crack is along
a 0°/90° interface. Both of these cases may be approached as two-dimensional problems.

In Section 2, the M —integral is extended from the three-dimensional J—integral for a
crack along the £45° interface. Stress intensity factors are calculated for a test case and
presented in Section 3.

2. THREE-DIMENSIONAL M-INTEGRAL

For the M —integral, auxiliary solutions are required. These are the asymptotic stress and
displacement fields which were obtained by Banks-Sills, et al. [7]. The Stroh [8] formalism
was employed to determine these fields. Three singularities were determined: two complex
conjugate ones, —1/2 + i, which lead to oscillatory stress behavior and a real one equal to
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Figure 1: Crack tip coordinates.

—1/2. The variable ¢ is the oscillatory parameter and depends upon material properties;
i = v/—1. The complex stress intensity factor K = K; +iK3 is the amplitude of the complex
singularity and Ky is the amplitude of the square-root singularity.
To proceed, Griffith’s energy may be derived for this material pair from the crack closure
integral as
sgn (Ea2) |Eas|
2 cosh? e
where F1; and Es5 depend upon mechanical properties of the material; expressions for these
quantities are given in Banks-Sills, et al. [7] and sgn represents the sign of the variable in
parentheses.
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Figure 2: (a) Virtual crack extension #; for a through crack. (b) In-plane, cross-section of
volume V' and outer surface S.

For a straight through crack which is treated in this study, the three-dimensional volume
J—integral is given by
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where L is the length of the normalized virtual crack extension ¢ (z3) along the crack front
(see Fig. 2a), 055, €;; and u; are the stress, strain and displacement components. The strain



energy density is W = 1/20;;¢;; and §;; is the Kronecker delta. The volume V' reaches from
the crack tip to an outer surface S. Taking the integral from the crack tip ensures path
independence. On S, ¢ is zero; it takes on the value ¢4 (z3) along the crack front; it is
continuously differentiable in V. The requirements for ¢; guarantee the validity of the right
hand side of eqn (2). Since the integrand of the right hand side of eqn (2) is reminiscent of
the J—integral, it is denoted as such. Details in choosing ¢; for obtaining accurate results
may be found in Banks-Sills and Sherman [9].

The right hand side of eqn (2) may be obtained accurately along the crack front. By
assuming that G is a constant for length L as illustrated in Fig. 2, this allows one to determine
the combined value of the stress intensity factors given in eqn (1). In order to obtain the
individual stress intensity factors, the M —integral is extended here for the +45° pair.

To this end, the method of superposition is employed to propose two solutions, namely,

K = KV +r®, (3)
K = K%)-E—Kg), 4)
K; = K +KP, (5)
wi = ulY +u® (6)
@ = o) tey (7)
Oij = a§;)+a§]2-). (8)

Solution (1) is the sought after solution; the fields are obtained by means of a finite element
calculation. Solution (2) consists of three auxiliary solutions which are derived from the first
term of the asymptotic solution for the displacements which are given by Banks-Sills, et al.
[7]. The stress intensity factors of solution (2a) are given by

K =1, K®=0, K =o0. (9)

The relations in (9) are substituted into the expresssions for the displacements. These are
differentiated to obtain the strains and Hooke’s law is employed to determine the stresses.
For solution (2b)

K =0, K™=1, K™=0. (10)
In a similar manner the fields for solution (2b) are found. Finally,
K=o, K =0, K =1. (11)

Substitution of eqns (6) through (8) into the right hand side of eqn (2) and manipulation of
the left hand side leads to
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where V is the volume in Fig. 2b, (2) takes on the values (2a), (2b) and (2¢) in succession,
1=1,2,3, 7 = 1,3 and the interaction energy density

W(lvz) — 0'(1)6(2) — 0'(2)6(]:) . (13)
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It is assumed that M) (z3) is a (different) constant along the crack front within each
element. For a sufficiently refined mesh, this assumption should provide a good approxima-
tion to the continuous function M2 (z3). The left hand side of eqn (12) is written within
a particular element as
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The virtual crack extension is assumed to be parabolic such that 0 < ¢;(z3) < 1 within each
element. So that, eqn (12) may be written as
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The value of M2 is an average value of the exact values along the crack front calculated
in a particular element.
On the other hand, substitution of eqns (3) through (5) into eqn (1) leads to
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Using solution (2a) in eqns (15) and (16) leads to
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using solution (2b) in eqns (15) and (16) leads to
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using solution (2¢) in eqns (15) and (16) leads to
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In eqns(19) through (21), K {1), K 2) and K. ?El) are average local stress intensity factors along
the crack front.

3 TEST PROBLEM

An edge crack in a finite thickness, bimaterial slab was considered. The first term of the
asymptotic displacement field given in Banks-Sills, et al. [7] was prescribed on the outer
boundaries of the body with K3 = K3 = 0 and Kj; = 1. Along the crack faces, traction free
conditions were assumed. Fiber reinforced carbon/epoxy material (AS4-3502) was analyzed.
Some material properties may be found in [6].

The program ADINA [10] was employed to carry out the finite element analyses. Twenty
noded isoparametric brick elements were used; at the crack tip, they were distorted to
quarter-point elements leading to a square-root singularity. It should be noted that the mode
IT stress intensity factor is the amplitude of the square-root singularity, whereas the complex
stress intensity factor is the amplitude of the square-root oscillatory singularity. Thus, this
element does not completely model the stress behavior. Two meshes were employed: one
containing 34,641 nodal points and the other 55,181 nodal points. Both meshes are focused
at the crack front. Through the thickness, both meshes contain 15 elements.

Integration of the M —integral is carried out in volumes which are orthogonal to the crack
front and are an element thickness in that dimension. The volume extends away from the
crack tip, but always includes the crack tip elements.
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Figure 3: Stress intensity factors (a) Ky, (b) K1 and Kj.

Results for K;, K;; and K3 obtained by means of both coarse and fine meshes are
exhibited in Fig. 3. It may be noted that Ky differs by 0.01% from its expected value in
the central part of the body for both meshes rising to 0.8% and 0.5% at the edges for the
coarse and fine meshes, respectively. The modes 1 and 3 stress intensity factors are zero in
the central part of the body with K; rising to 0.001 and K3 oscillating and rising to 0.014
at the edges for the fine mesh.

These results were obtained with the volume V in Fig. 2b including three rows of elements
in the 21 and xs—directions. The distance to the boundary S along the z;—axis is 3.75%
and 2.1% of the crack length a for the coarse and fine meshes, respectively. Although the
M —integral is theoretically path independent, the region adjacent to the crack front which
includes only the crack tip elements is not as accurate as other domains. This is attributed to



the near tip elements which do not model correctly the oscillatory stress behavior. Moreover,
it appears that the error is concentrated within these elements. Unlike the two-dimensional
M —integral, even a domain removed from the crack tip region, as in Fig. 2b, includes
inaccurate results from the near tip elements.

4. SUMMARY AND CONCLUSION

A crack along the +£45° interface of two fiber reinforced materials has been considered.
The effective mechanical properties are used so that the materials are treated as being
transversely isotropic. The M —integral is presented and employed to obtain stress intensity
factors in one test case. Excellent results are obtained. Elsewhere, other results will be
presented.
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