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ABSTRACT 
In this study an investigation on the utilization of delamination models based on plate theories and interface 
technique for analyzing 3D delamination problems is presented. The proposed method analyses the laminated 
structures as composed by first-order shear deformable plate elements interconnected by interfaces, whose 
constitutive relationships are based on fracture and contact mechanics. Delamination is simulated by reducing 
to zero interface stiffnesses, which otherwise perfectly connect the plate models by considering them as 
penalty parameters. Lagrange and penalty methods are adopted in order to simulate interactions between 
layers. The influence of plate and interface quantities on the interface fracture problem is investigated by 
means of closed form expressions for energy release rates, developed in terms of interface strains and of plate 
stress resultant discontinuities. At first, a simple two-dimensional delamination problem is considered in 
order to highlight the main characteristics of the model. Then, numerical results for the energy release rate 
distributions are given for typical three-dimensional mixed mode delamination problems by implementing the 
method in a 2D finite element analysis. Comparisons with 3D finite element models show the accuracy and 
the computational efficiency of the proposed procedure. Some applications are proposed to point out the 
convergence of the mode partition procedure as the delamination front element size decreases, also when 
oscillatory singularities exist. 
 

1  INTRODUCTION 
According to the fracture mechanics approach, the propagation of an existing delamination is 
analyzed by comparing the amount of energy release rate with interface toughness. When mixed 
mode conditions are involved, such as in practical delamination problems for composite structures, 
the decomposition of the total energy release rate G into mode I (GI), mode II (GII) and mode III 
(GIII) components, becomes a necessary task due to the mode-mix dependency of interface 
toughness. The problem of computation of the total energy release rate and of its mode 
decomposition for delamination in composite plates has been usually analyzed in the framework of 
the elasticity theory by applying the virtual crack closure technique (Kanninen [1]) to results 
obtained from continuum (2D) or solid (3D) finite element analyses. Due to the high gradient of 
stress and strain states in the neighborhood of the delamination front, a very accurate solution is 
indispensable which can be obtained by adopting an appropriate mesh of solid finite elements in 
the neighborhood of the delamination front. Illustrations of this methodology can be found both 
for two-dimensional (see for instance, Raju [2]; Beuth [3]) and three-dimensional delamination 
problems (Whitcomb [4]; Davidson et al. [5]). However, the computational cost of the continuum 
model is usually very high, due to the notable number of solid elements required, and additional 
complications arise due to the oscillatory behavior of energy release rates predicted by the three-
dimensional elasticity theory when the delamination is placed between two dissimilar materials 
(see Raju [6]). In order to reduce the cost of delamination analysis the “global/local analysis” 
concept has been proposed (Suo and Hutchinson [7], Davidson et al. [8]). In this method the 
classical plate theory is adopted to predict G, whereas mode decomposition into individual energy 
release rates is completed by means of a separate local continuum problem with reference to a 
small element containing the delamination front. As a consequence, transverse shear deformation 
is not completely accounted for in the analysis and when the influence of shear effects is notable 
as in the case of composite laminate, one must resort to the expensive continuum model.  



On the basis of a previous authors’ model, developed in the context of 2D delamination by 
using refined plate theories and interface approach (Bruno & Greco [3], Bruno et al. [4]), in the 
present study a simple but appropriate method for the analysis of 3D delamination problems is 
presented for laminated composite structures, based on the multi-layer shear deformable plate 
modeling and interface technique. The model takes advantage of the computational efficiency of 
plate-based models and provides a reasonable accuracy in the determination of both the total and 
the individual energy release rates in comparison with 3D models. Applications, carried out by 
implementing the model by means of an FE formulation, demonstrate the accuracy of the proposed 
method in comparison with results obtained by using 3D solid finite elements available in the 
literature, and the avoidance of the non convergence behavior of individual energy release rates 
related to the oscillatory singularities. 

 
2  A TWO-DIMENSIONAL EXAMPLE  

Consider the interface fracture problem shown in Figure 1, where a delamination is located 
between the upper plate and the lower plate made of dissimilar homogeneous isotropic materials 
with equal thicknesses h. Plane strain assumptions are used along the width direction of the plate 
and two opening moment resultants per unit width M are applied at the delaminated portions of the 
structure. The longitudinal modulus and the Poisson ratio of the i-th plate are Ei and νi, 
respectively. The total and individual components of the energy release rate for this bi-layer 
configuration can be obtained by solving the boundary value problem governing the edge 
delamination, using a continuum 2D finite element analysis. Due to the applied loads, each of the 
two plates bend differently and shear stresses σzx arise along the interface to maintain adhesion at 
the interface (z=0). As a consequence, a mixed mode condition occurs. It is well known that when 
the Dundurs’ elastic mismatch parameter β does not vanish (see Suo and Hutchinson [7]), the so-
called oscillatory singularity develops for stresses and displacements near the delamination tip, of 
the form r-1/2+iε where ε is the oscillatory power. Note that the oscillatory power vanishes when β 
also vanishes for certain combinations of material properties that satisfy G1(1-2ν2)=G2(1-2ν1). The 
components of the energy release rates were calculated by applying the virtual crack closure 
technique (VCCT) with nodal forces and displacements near the delamination tip evaluated by 
using 8-noded plane strain continuum elements. Nodal forces near the delamination tip are 
recovered as the Lagrange’s multipliers associated with the constraint equations imposed to ensure 
interfacial displacement continuity. The commercial package LUSAS (FEA Ltd) was chosen as 
solver. The material parameters used are: a=10mm, h=1mm, =15mm, E1=100,000 N/mm2, E2= 
E1/10, ν1=ν2=ν=0.3. 
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Figure 1: Bilayer plate under bending loading.        Figure 2: Enlarged view of the delamination tip    
                                                                                                Mesh. 

 
 
Several finite element analyses were carried out with delamination tip element sizes equal to 

∆/h=0.5,0.25,0.167,0.125,0.0625,0.050,0.033,0.0167,0.01,0.067,0.005 (see Figure 2). Figure 3 



shows the behaviour of individual and total energy release rates obtained from the VCCT, as the 
delamination tip element size decreases. It can be observed that the total energy release rate is 
practically constant, whereas the individual components show non-convergent behaviours: the 
mode I energy release rate component decreases whereas the mode II energy release rate 
component increases as ∆/h becomes smaller. As shown in Raju [6] the reason for the non-
convergent behaviour of energy release rate mode components is the non-zero oscillatory part of 
singularity. A matter of fact, for the two considered materials β=-0.2338 and ε=0.0758. 

On the other hand, the energy release rates can be evaluated by modelling the bilayer structure 
as an assembly of first order shear deformable plate elements connected through interfaces, in 
terms of plate or of interface quantities (see Bruno et al. [10]). The use of beam/plate elements 
instead of solid elements is preferable not only for computational convenience, but since the non-
convergent behaviour of energy release rate mode components is avoided. As a matter of fact, 
instead of oscillatory singular stresses, delamination tip forces exist which cause stress resultant 
discontinuities across the delamination tip. Moreover, a good approximation of the total energy 
release rate can be obtained if only one plate element is used to model each layer, whereas a more 
refined subdivision is necessary to obtain an accurate mode partition. When a two-plate model is 
used energy release rates can be obtained in a closed-form, once the governing equations of the 
bilayer structure are solved, by using the formulas obtained in (Bruno et al. [10]) for energy 
release rate mode components in terms of plate variables: 
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where, with reference to the plate i, εi, κi, γi denote the membrane strain, the curvature and 
transverse shear strain, respectively, ψi denotes rotation of transverse sections, Ni is the membrane 
force resultant, Mi the moment resultant and Ti the transverse shear force resultant. Moreover, the 
double bracket denotes the jump in the enclosed quantity. Eqn (1) leads to: 
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Eqns (2) show that mode II energy release rate arises from mismatch in longitudinal moduli. 
Moreover, from eqns (2) it can be noted that individual energy release rates are well defined 
despite the non-convergent behaviour predicted by the 2D elastic theory.   
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Figure 3: Energy release rates calculated from the VCCT technique (left) and from the coupled 

multilayer-interface approach (right). 
 



When a refined plate elements subdivision is considered, a numerical integration procedure 
must be adopted to solve the governing differential problem. In this case it is more convenient to 
extract energy release rates from interface stresses and strains evaluated in the linear elastic 
interface located between the two layers by using interface stiffnesses kxy and kz as penalty 
parameters: 
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where ∆w and ∆u are the opening and sliding relative displacements at the delamination tip, 
respectively. The results for the present model, illustrated in Figure 3 (right), show that the total 
energy release rate and its individual components converge to definite values as interface 
stiffnesses approach infinity and the accuracy of the mode partition can be refined by increasing 
the number of plate elements in the structure. The previous considerations are based on a plane 
problem, on the other hand in the subsequent sections, where the analysis will be devoted to the 
3D delamination problem, similar conclusions will be established. 

 
3  MECHANICS OF A DELAMINATED STRUCTURE  

Consider the delamination problem of Figure 4, where a laminate structure contains an in-plane 
delamination crack of area ΩD and arbitrary front ΓD which divides the laminate into two sub-
laminates of respective thickness h1, h2. Each sublaminate is schematized by an assemblage of first 
order shear deformable plate bonded by zero-thickness interfaces in the transverse direction: the 
upper one is subdivided into nu plates whereas the lower one into nl. A perfect adhesion is ensured 
in the undelaminated region Ω-ΩD by means of a linear interface model, whose constitutive law 
involves two stiffness parameters, kz, kxy, imposing displacement continuity in the z, and x-y 
directions, respectively, by considering them as penalty parameters. In the delaminated region ΩD 
sublaminates are free to deflect but no to penetrate. Consequently, if a damage variable d is 
introduced, taking the value 1 value for no adhesion and the value 0 for perfect adhesion, the 
following constitutive law is introduced: 
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where σzz and σzy, σzx, are the interlaminar normal and shear stresses and ∆w, ∆u and ∆v are the 
corresponding interface relative displacements. The displacement continuity conditions between 
any two adjacent plates, i and i+1, into each sublaminate, i.e. ∆ui=∆vi=∆wi=0, are ensured by the 
Lagrange’s method.  

By using fracture mechanics procedures expressions similar to eqns (1) and (3) can be found 
for the point-wise energy release rate and its mode I, II and III components along the delamination 
front, in terms of plate and interface quantities. In particular, the one expressed in terms of 
interface variables, which is more convenient for numerical applications, can be written as 
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where ∆un and ∆ut are the relative interface displacements in the normal (n) and tangential (t) 
directions at the delamination front, respectively.  
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Figure 4: Mechanics of the delaminated composite structure. 

 
 

4  NUMERICAL APPLICATIONS 
In order to analyze applications to three-dimensional delamination geometries, the proposed 
theoretical method has been implemented in a 2D finite element model by using the commercial 
FE code LUSAS, licensed by FEA Ltd. For plate models four-noded isoparametric thick shell 
elements are used, whereas eight-noded interfaces are simulated by using joint elements composed 
by three translational springs. These springs have high stiffnesses and connect node pairs 
belonging to upper and lower plate elements.  The same mesh is adopted for all the plate models in 
the thickness direction. Rigid links are adopted in order to simulate the thickness dimension of the 
two plate, nl and nl+1, sharing the delamination plane. As a consequence offset node pairs are 
generated with respect to the midplanes of the nl and nl+1 plate models, belonging to the 
delamination plane. Interface elements are connected to these offset nodes. Interfacial 
displacement continuity in each sublaminate, is ensured by using constraint equations. Eqns (5) are 
applied in a modified version in order to avoid an excessive fine meshing at the delamination 
front, by using reactions from interface spring elements at the delamination front and relative 
displacements of the nodes ahead the delamination front collocated along the normal direction.  

A normal axial loading condition is now considered for a three-dimensional symmetric 
delaminated plate geometry. The plate is isotropic and its properties are that used by (Davidson et 
al., [8]) and are as follows: a=256, h1=h2=h=16, B=400, L=512, E=80,000, ν=0.3, N=6.25. The 
data are in nondimensional units. The mesh for plate models is the same of that utilized in the x-y 
plane for the 3D solid FE model of Davidson et al. [8]. The analysis shows that when mixed mode 
conditions are involved, a double plate model is able to capture accurately mode decomposition in 
the region near the midpoint of the delamination front. On the other hand, an accurate mode 
decomposition near the free edges of the delamination front, where 3D effects are more complex, 
necessitates of more than one plate element in each sublaminate along the thickness direction, due 
to the large gradients in in energy release rates. However, the solution converges rapidly since a 
small number of plates is needed to obtain a reasonable approximation, as shown  in Figure 5 
where GII and GIII distributions, normalized with respect to the classical beam theory results, are 
plotted. On the contrary, the use of solid finite elements leads to an increase of the number of 
degrees of freedom with respect to the present model. Additional investigations, not shown here, 
have highlighted that both the individual components and the total energy release rate converge as 
the delamination front elements are made smaller when delamination is placed between two 
dissimilar sublaminates.  
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5  CONCLUSIONS 
A computationally efficient and accurate delamination model for laminated composite plates under 
loading conditions involving a combination of the three fracture modes, has been presented by 
considering the plate as a sequence of shear deformable plates connected by interface layers in the 
thickness direction. Adopting a relatively small number of plates in the thickness direction leads to 
an accurate prediction of the total and individual energy release rates, which also includes the 
effects of shear deformation and of delamination faces interaction. The good agreement with 
results from highly refined numerical solutions based on a 3D continuum description, have shown 
that, despite the good degree of accuracy, the proposed model involves a lower computational cost 
than full three-dimensional FE models, which may require a large number of solid finite elements 
to describe the delamination front region. Finally, our investigations have shown that the use of 
plate variables avoids the numerical complications in energy release rates convergence due to the 
oscillatory singularity behavior of stresses and strains at the delamination front predicted by the 
elasticity theory. 
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