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ABSTRACT 

 
Laminated structures can enhance the resistance of brittle ceramics. The interfaces are expected to deflect 
cracks, increasing the fracture energy of the laminate compared to a monolithic material and thus raising the 
apparent toughness. The laminates are made of alternating dense and porous layers. This offers the best 
chemical compatibility between the laminas and almost no thermal residual stresses. The question is to 
predict the volume fraction of pores required to cause crack deflection. 
The criterion derives from an energy balance and takes into account an additional stress criterion avoiding the 
drawback met in other approaches: the arbitrary choice of crack increment lengths. The model is based on a 
two-scale analysis and can be written in terms of Young’s modulus and toughness ratios.  
Experiments show that a unique function depending on the volume fraction of pores can be used to express 
the above mentioned ratios. A cubic lattice of spherical voids is assumed. The parameters of the porous 
ceramic depend linearly on the porosity and vanish at percolation of pores. Then the criterion can be rewritten 
in terms of a single parameter: the porosity. 
Results agree almost well with experiments on SiC and B4C. The comparison with the He and Hutchinson 
criterion (HH) shows that it underestimates the correct value.  
 

1  INTRODUCTION 
 

Ceramics are very brittle materials. Laminated structures can enhance their resistance. The 
interfaces are expected to deflect cracks, increasing the fracture energy of the laminate compared 
to a monolithic material and thus raising the apparent toughness. The laminates are made of 
alternating dense and porous layers. This offers the best chemical compatibility between the 
laminas almost no thermal residual stresses. The question is to predict the volume fraction of pores 
required to cause crack deflection. 
Two ceramics are analysed: Silicon Carbide (SiC) (Blanks et al. 1998 [1], Reynaud 2002 [2]) and 
Boron Carbide (B4C) (Tariolle 2004 [3]). Porosity is introduced by adding corn starch or polymer 
particles in the interlayer. They are burned out during the elaboration process (tape-casting). 
Dense and porous layers have the same thickness (≈ 100 µm). Laminated specimens made of 20 
layers have been tested under 3-point flexure loadings. 
The analyses of crack deflections by interfaces are generally based on two models due to He and 
Hutchinson (1989 [4, 5]). Both are carried out in an unbounded domain made of two elastic 
materials. In the first one [4], the primary crack lies in one material and impinges on the interface. 
Two virtual crack extensions are considered, one along the interface and one in the adjacent 
material. The energy release rates at the tip of these two extensions are compared. The drawback 
of this approach is the arbitrary choice of the two increment lengths. In the other one [5], the 
primary crack lies along the interface and the ability of the crack to leave the interface is studied. 
The two criteria involve the toughness of the materials and of the interface. Curiously, it is often 
this second paper that is referred to interpret the experimental results of cracks deflection in 
ceramic laminates, although the main assumption, a long primary interface crack, is not fulfilled. 



The criterion we proposed here derives from an energy balance and takes into account an 
additional stress criterion. This allows avoiding the above mentioned drawback. 
 

2  THE ASYMPTOTICS OF THE PROBLEM 
 
The model is based on a two-scale analysis, the small parameter being the layers thickness. At the 
macro scale the material is homogenized using a rule of mixture for simplicity. More sophisticated 
homogenization processes do not bring significant differences in the final results. There is a 
primary crack which tip undergoes the classical mode I. The antisymmetric mode II is inhibited 
due to the symmetries.  

 
Figure 1: The 3-point flexure loading on the pre-cracked specimen. 

 
Within this framework, the solution (so-called the far field) prior to any crack growth writes 
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Here  and  are the Cartesian coordinates and 1x 2x r  and θ  the polar ones. 
Considering now a small crack extension l , the perturbed solution is expressed as a correction 
brought to the initial term (1) 
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The micro scale is obtained by stretching the domain around the primary crack tip by  where 
 is the layers thickness. Considering the limit , the problem is now settled in an 

unbounded domain, so-called inner domain. In order to have tractable computations, this domain 
is artificially bounded at a large distance (>>1, where 1 is the dimensionless stretched thickness of 
the layers) of the primary crack tip. Secondly, only few dense (D in figure 1) and porous (P in 
figure 1) layers (3 or 4) are kept in the vicinity of the primary crack tip, the remaining part being 
replaced by the homogenized material (H in figure 1). 
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Figure 2: The simplified inner stretched domain. 



Using the change of variable  (exy ii /= er /=ρ ), 0U  can be expanded as (near field) 
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where the 0 in W  recalls that there is no crack extension. The function W  is solution to the 
following problem 
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The elastic operator  takes different values in the dense and porous layers and in the 
homogenized remaining part and ∇  refers to derivatives with respect to  and . The condition 
at infinity is the matching with the mode I term involved in the far field. 
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Similarly, a crack extension l  (a deflection at the interface porous/dense is illustrated in figure 2) 
leads to the following expansion 

...),,( )0,0(),(),( 21
0

2121 ++== µyyWekUyyUxxU Ill
ll   (5) 

where e/l=µ  is the dimensionless crack extension length. Here W  must fulfil the same system 
of equations (4), the tension free condition (43) being extended to the faces of the crack extension. 
 

3  THE DEFLECTION CRITERION 
 

Within this framework, the leading term of the change in potential energy between the two states 
(prior to and following a crack extension) writes 
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where  and  are respectively the Young’s modulus of the dense and porous ceramics (the 
Poisson’s ratio plays a minor role), A is numerically derived from the displacement field 
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a contour integral (Leguillon 2002 [6]). A necessary condition for the crack growth is a 
consequence of an energy balance 
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where  is the toughness in the direction of fracture. This expression must be considered twice, 
once for a deflection (index def in the following) and once for a penetration in the next layer 
(index pen). Deflection is promoted if the above inequality holds for deflection while it is wrong 
for penetration, it leads to 
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where  and  are the toughness of the dense and porous ceramics. It is assumed here that the 
toughness along the interface between the dense and porous ceramics is that of the porous material 
(note that if the interface was stronger then the crack would grow within the porous medium at a 
short distance of the interface). Clearly the dimensionless crack increment lengths play a role in 
the above relation. In this step, we make the following reasonable additional assumption, if the 
crack penetrates the next layer then it breaks it completely: . The deflected 
extension length remains to be determined. It could be done using a maximum stress criterion 
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(Leguillon 2002 [6]). For simplicity, we assume here that . Nevertheless, complete 
computations have been done (Cherti Tazi 2004 [7]) and it has been observed that the deflection 
length increases with the porosity but that the final results are not strongly modified.  
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Finally the criterion takes the simplified form 
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It is clear from this expression that the crucial point in this criterion is the knowledge of the ratio 
of the elastic and fracture parameters in terms of the porosity. 
 

4  CHARACTERISTIC PARAMETERS OF THE POROUS CERAMIC 
 

The two figures 3 and 4 show that a unique function depending on the volume fraction of pores V  
can be used to express the elastic and fracture parameters of the porous material. It can be either 
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In both cases a cubic lattice of spherical voids is assumed and the parameters of the porous 
ceramic vanish at percolation of pores ( 52.06/ == πV ). In the first case the parameters depend 
linearly on the volume fraction of pores V , whereas they depend linearly on the largest surface 
fraction of pores  (the fracture surface) in the second case. S
As a consequence, the deflection criterion (9) rewrites 
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Figure 3: Young’s modulus ratio vs. porosity V : SiC with Polyamide particles (diamonds), SiC 
with corn starch particles (squares), B4C with corn starch particles (triangles). Shear modulus ratio 
vs. porosity V : B4C with corn starch particles (circles). The dashed line is the function , the 
solid line is the function . 
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Figure 4: Toughness ratio vs. porosity V : SiC with Polyamide particles (diamonds), SiC with 
corn starch particles (squares), B4C with corn starch particles (circles), SiC with PTFE particles 
(triangles) (data from Blanks et al. 1998 [1]).  dashed line,  solid line. )(VH )(VK
 

5  NUMERICAL RESULTS AND CONCLUSION 
 

The function g  (10) and the toughness ratio are plotted vs. the Young’s moduli ratio (figure 5) at 
a porous/dense interface (a similar analysis shows that no deflection can occur at the dense/porous 
interface). It is simply assumed that the two ratios follow the same rule (whatever this rule).  
The criterion can be also plotted vs. the porosity. It is illustrated in the two following figures. In 
the first one (figure 6), the elastic and fracture parameters depend linearly on the volume fraction 
of pores, whereas in the second (figure 7) they depend linearly on the surface fraction of pores. 
Clearly the predicted porosity that causes crack deflection (arrows in figures 6 and 7) is above 
40% in both cases. It is in a good agreement with the experiments of Reynaud [2] and Tariolle [3] 
while the He and Hutchinson approach underestimates it. Blanks et al. [1] found a slightly lower 
value of the porosity (between 34% and 44%), an explanation could be that their interfaces 
between porous and dense ceramics are weaker (impurities) than those tested in [2] and [3].  
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Figure 5: The function g  (solid line) vs. the Young’s moduli ratio  and the He and 

Hutchinson approach (HH, dotted line) compared to the toughness ration  (dashed line).  
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Figure 6: The function  (solid line) vs. the volume fraction of pores and the He and Hutchinson 
approach (HH, dotted line) compared to the toughness ration  (dashed line). 
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Figure 7: The function  (solid line) vs. the volume fraction of pores and the He and Hutchinson 
approach (HH, dotted line) compared to the toughness ration  (dashed line). 
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