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ABSTRACT 

 
Crack branching and instability phenomena are believed to be closely related to the circumferential 

or hoop stress in the vicinity of the crack tip. In this paper we show that the hoop stress around a mode I crack 
in a harmonic solid becomes bimodal at a critical speed of about 73 percent of the Rayleigh speed, in 
agreement with the continuum mechanics theory. Additionally, we compare the energy flow field predicted 
by continuum theory with the solution of molecular-dynamics simulations and show that the two approaches 
yield comparable results for the dynamic Poynting vector field. This study exemplifies joint atomistic and 
continuum modeling of nanoscale dynamic systems and yields insight into coupling of the atomistic scale 
with continuum mechanics concepts. 

 
1. INTRODUCTION 

 
Many phenomena associated with rapidly propagating cracks are not thoroughly 

understood. Experimental work [1-3] and computer simulations [4] as well as theoretical 
investigations [5] have shown that initially straight cracks start to become unstable upon a critical 
speed of about 30 percent of their limiting speed, the Rayleigh velocity [6]. In contrast, it was 
proposed based on the linear elastic continuum theory that cracks become unstable at about 73 
percent of the Rayleigh speed (speed of surface waves) [6, 7]. 

Up to date, it remains unclear what is the governing stress measure governing branching 
and crack instabilities at the atomic scale. Continuum formulations often use a material instability 
criterion similar to the principal stress to determine in which direction the material will fracture 
(e.g. [8]). It remains controversial if such a criterion can be accepted at the atomic scale, as the 
breaking of single atomic bonds is expected to govern the dynamics of cracks. Yoffe [7] proposed 
that crack propagation should become unstable when the circumferential or hoop stress near a 
crack tip has a maximum at angles off the propagation direction. She showed that for low 
velocities, the hoop stress has a maximum ahead of the crack tip, but for velocities larger than 
about 73 percent of the Rayleigh speed, the hoop stress maximum is at off-angles of about 60 
degrees, potentially causing the crack to change direction. 

Atomistic simulations can successfully address many issues of dynamic fracture by 
providing an ab initio description of the fracture process [4, 9-12]. Here we use large-scale 
atomistic simulations to study the near-crack elastic fields in mode I dynamic fracture and to 
compare the discrete atomistic and the continuum mechanics viewpoints. The studies reported here 
are the first in a series of computer experiments where the crack instability is investigated. The 
main objective of this work is to show that the continuum mechanics prediction of a bimodal hoop 
stress field is reproduced quantitatively in molecular dynamics (MD) simulations. Since we focus 
on the deformation field near rapidly propagating cracks even beyond the instability speed, we 
constrain the crack to propagate along a one-dimensional prescribed fracture path modeled by a 
weak Lennard-Jones cohesive bonding. In the rest of the slab, atomic bonds are described by a 
harmonic potential and never break. 
 



The plan of this paper is as follows. We start with an elastic analysis of a Lennard-Jones 
lattice as well as a harmonic lattice. We then show that in MD simulations of cracks traveling in 
perfect harmonic lattices the hoop stress becomes bimodal at about 73 percent of Rayleigh speed, 
in agreement with the continuum theory. In addition, we report comparison of continuum theory 
with MD simulation of the strain energy field near the crack tip as well as the energy transport 
field near rapidly moving cracks. 

 
 

 
 

Figure 1: Geometry of the simulation slab under mode I loading. The plot also depicts the crack 
orientation and the bond breaking process at the crack tip. 

 
2. ATOMISTIC MODELING 

 
Recent two decades have witnessed increasing research on MD simulations in materials science. 
Using huge supercomputers to break tiny nano-crystals has become an unforeseen fruitful 
combination. [4, 9-12]. The success of atomistic simulations of brittle fracture is partly due to the 
fact that the time and length scales involved in brittle dynamic fracture is perfectly suitable for MD 
simulations. Fracture is a process occurring on the order of sound speeds and a crack moves 
through a crystal with nanometer dimensions in a few picoseconds. 

The basis of our simulations is the atomic interactions of a simple rare-gas solid 
accurately described by the Lennard-Jones 12:6 (LJ) potential. All quantities are expressed in 
reduced units. Lengths are scaled by the LJ-parameter σ=1, and energies are scaled by the 
parameter ε=0 which is the depth of the minimum of the LJ potential. The mass of each particle is 
m=1. Such a two-dimensional lattice behaves as a brittle solid [4].  

The LJ potential is highly nonlinear [4, 5]. To rule out nonlinear effects, we linearize the 
LJ potential around the equilibrium distance 12246.12 6/1

0 ≈=r  and define a harmonic potential  
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with spring constant  k=72/21/3 ≈ 57.15 and 10 −=a . 
To avoid crack branching or wiggling [4, 5], we constrain the crack to propagate along a 

one-dimensional fracture path. The slab geometry and orientation of the two-dimensional 
hexagonal lattice is shown in Figure 1. To apply loading to the system, we displace the outermost 



rows of atoms in the slab according to a prescribed strain rate 00001.0=ε& and establish an initial 
linear velocity gradient in the slab. Note that the strain rate is given in reduced units defined by the 
LJ potential. Boundaries are held fixed at their current position to stop loading. The interactions 
across the weak layer are defined by the LJ potential, while the potential is defined by equation (1) 
in the rest of the slab. A horizontal slit is cut midway along the left-hand vertical slab boundary, 
serving as a source for further crack extension. The crack is oriented orthogonal to the close-
packed direction of the triangular lattice, and the slab is initialized with a temperature T ≈ 0 K. 
 

 
 

Figure 2: The continuous lines show the elastic properties of the Lennard-Jones solid. The dashed 
lines show the elastic properties associated with the harmonic potential. The dash-dotted lines in 

the upper plots show Poisson's ratio. 
 

Figure 2 shows numerical estimates of the elastic properties of a Lennard-Jones solid, 
where the elastic properties of the harmonic interactions are also included. The systems are loaded 
uniaxially in the two symmetry directions of the triangular lattice. The plot of the LJ system shows 
that the y direction requires a higher breaking strain than in the x direction (about 18 percent versus 
12 percent). The tangent Young's modulus drops significantly from around 66 for small strain until 
it reaches zero when the solid fails. Poisson ratio remains around 1/3, but increases slightly when 



loaded in the x direction and decreases slightly when loaded in the orthogonal direction. The 
Young's modulus E with harmonic interactions increases with strain, and coincides with the value 
of the LJ solid for small strains. It can also be shown that the harmonic solid is isotropic for small 
strains, with Poisson's ratio close to 1/3 similar to the LJ solid. 

Exact knowledge of the elastic properties (see further details in [8]) allows calculating the 
wave speeds, which will be critical in comparing the deformation field near the moving crack tip 
to the continuum theory prediction. The Ralyeigh-wave speed is found to be cR=4.8, the 
longitudinal wave speed is found cl=9 and the shear wave speed is determined to be cs=5.2.  
 

 
 

Figure 3: Comparison between hoop stress from MD simulation with harmonic potential (dots) 
and the prediction of the continuum mechanics theory (continuous line). The crack speed with 

respect to the Rayleigh velocity is indicated in each subplot. 
 

3. HOOP STRESS FIELD AND DYNAMIC INSTABILITY DURING CRACK 
ACCELERATION 

 
We calculate the hoop stress field for different crack speeds ranging from 0 to 87 percent 

of the Rayleigh speed. Figure 3 shows the angular variation of the hoop stress θσ , comparing the 
MD results (dots) with the continuum theory prediction (continuous line).  The results show 
reasonable agreement of the continuum theory prediction [6] and the MD simulation results.  The 
most important observation is that once the crack speed exceeds a critical value of about 73 
percent of the limiting Rayleigh-wave speed, the hoop stress maximum shifts from 0 degrees to 
about 60 degrees, in agreement with continuum theory [6, 7].  

In the next step, we wish to focus on the dynamics of cracks in homogeneous materials. 
Therefore, we relieve the constraint of the weak path. Figure 4 shows a crack moving in a 
harmonic lattice with snapping bonds along the direction of lowest fracture surface energy, the 
stable crack propagation direction. The most important result is that the crack initially propagates 
straight with perfect cleavage where the crack faces are atomically flat. At a velocity of about 73 



percent of Rayleigh-wave speed, the crack starts to oscillate and the crack surface roughens. This 
leads to significantly reduced propagating speeds. Comparing this result to the predictions by the 
continuum mechanics theories [6, 7], we find good agreement! The analysis of the hoop stress 
shown in Figure 3 revealed that the hoop stress becomes bimodal upon a critical speed of about 73 
percent of Rayleigh-wave speed. An important observation is that at onset of instability, the crack 
branches at an angle of 60 degrees. Since the hoop stress maximum is at about ±60 degrees, this 
observation corroborates the notion that the hoop stress governs the instability in harmonic 
systems! 

 
4. DISCUSSION AND CONCLUSION 

 
 In summary, we have shown that the instability speed in harmonic lattices agrees 

reasonably well with the prediction by linear elastic fracture theory. The observation of branching 
at an angle of 60 degrees supports the notion that the hoop stress governs this mechanism. We 
have further exemplified how a systematic comparison of continuum mechanics theories and 
atomistic viewpoints can be performed. Such studies may be critical in investigating numerous 
other dynamical materials phenomena at small scales.  
 Future investigation could focus on the effect of hyperelasticity on the dynamic crack tip 
instability. Preliminary results suggest that hyperelastic stiffening materials yield an increase in 
critical instability speed, whereas softening materials show a significant decrease in critical speed 
where the crack tip instability sets in. In our preliminary studies, we have observed mode I cracks 
moving mirror-like up to super-Rayleigh speeds, provided that the material is hyperelastic and 
stiffens with strain. This suggests that hyperelasticity is critical for dynamic fracture, as proposed 
earlier [12].  
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Figure 4: Dynamic crack tip instabilities harmonic system (potential energy indicating the crack 
surface by the red color). The results illustrate that the crack becomes unstable at about 73 percent 
of the Rayleigh-wave speed, in agreement with the continuum theory predictions. The observation 

of the instability can be correlated with the hoop stress becoming bimodal (see Figure 3).  
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