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ABSTRACT 

The numerical analysis of singular elasticity problems by means of standard finite element analyses usually 
requires significant computational effort, hence there is a particular interest in introducing new and efficient 
analysis methods like e.g. the boundary finite element method (BFEM, [1]), especially when detailed 
information on the asymptotic behaviour of the state variables – displacements, strains and stresses – in the 
vicinity of the singularity is sought. The BFEM combines the advantages of the finite element method and the 
boundary element method to a new and efficient procedure.  
As a prerequisite the BFEM assumes a certain scalability of the given structure with respect to a similarity 
center. In analogy to the boundary element method, only the boundary of the structure needs to be discretized, 
wherein standard isoparametric displacement based finite element formulations are sufficient. Thus, no 
fundamental solution is required. Hence, the BFEM can be characterized as a fundamental-solution-less 
boundary element method solely based on finite elements. In the course of the finite element based derivation 
of the governing equations, the similarity or scalability characteristics enable a separation of coordinates such 
that in the scaling direction the method yields simple systems of differential equations that can be solved in 
an analytical way. In the directions perpendicular to the scaling direction the method converges in the FEM 
sense. The BFEM thus exhibits semi-analytical characteristics.  
In the present contribution the BFEM is employed for the investigation of the order of stress singularities for 
several classes of three-dimensional singular stress concentration problems, e.g. for three-dimensional crack 
[2-4] or notch [5] situations as well as for free edges [6] and corners [7,8] of layered structures. In all cases, 
the BFEM results agree excellently with reference results. The required computational effort is considerably 
lower compared to e.g. standard FEM computations and thus establishes the BFEM as a powerful tool for the 
numerical modelling of linear elastic solids.  
 

1  THE BOUNDARY FINITE ELEMENT METHOD (BFEM) 
The BFEM is a boundary element method based on standard finite element formulations and does 
not require a fundamental solution. It applies for the investigation of unbounded as well as 
bounded structures and uses scalability of the given structure with respect to a similarity center S. 
In order to introduce the basics of the BFEM let us consider a free corner interface between two 
arbitrary layers of a laminated plate (fig. 1) the geometry of which can be described by the 
introduction of a fictitious convex interior boundary Γi of arbitrary shape at the characteristic 
radial distance ri from the similarity center S, and a centric scaling of the radial coordinate r so that 
the radial coordinate re of an arbitrary similar exterior boundary Γe is described by re = (1+w)ri. 
The quantity w is a dimensionless scaling parameter. The resultant space between Γi and Γe (so-
called finite element cell) is discretized with one single layer of standard displacement based 
isoparametric finite volume elements. Note that presently the similarity center is identical to the 
singular point in the interface of the three-dimensional laminate corner situation where 
considerable stress singularities are known to occur [6-8]. The force-displacement relation 



concerning the finite element cell reads in a decomposed notation with respect to the interior and 
exterior boundary: 
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The stiffness submatrices Kjl with j,l = i,e read: 
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wherein C is the stiffness matrix of the layer material and det(J) denotes the determinant of the 
Jacobian matrix. The natural element coordinates are introduced as ξ, η, ζ, wherein ξ is the local 
radial coordinate parallel to r, the circumferential directions are denoted as η, ζ. The strain-
displacement operator matrices Bj and Bl are derived straightforwardly by employing a consequent 
decomposition of the element formulations into portions concerning the interior and exterior 
boundary. Details can be found in e.g. [1]. The arrays ui, ue and Fi, Fe contain the nodal 
displacements and forces on the boundaries Γi and Γe.  
 

 
 

Figure 1:  Principle of scalability and discretization of a 3D interface corner. 
 
With respect to the radial coordinate ξ the integration process eqn (2) can be easily performed in 
an analytical manner as the integrand is a polynomial in ξ. When a linear displacement 
representation is chosen in the scaling direction, the following result for Kjl is achieved (with ξi = -
1 and ξe = +1): 
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The matrices E0, E1, E2 solely depend on η, ζ and on the finite element meshes on the boundaries: 
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The operator matrices B1 and B2 incorporate partial derivatives of the finite element shape 
functions, see [1] for more details. Equilibrium between the finite element cell and the enclosing 
actual structure leads to the following force-displacement relationship: 
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The two unknown boundary stiffness matrices Ki and Ke describe the deformation behaviour of 
the unbounded structures characterized by the boundaries Γi and Γe. After the elimination of e.g. ue 



from eqn (5) and the choice of an arbitrary ui, the scaling property Ke = (1+w)Ki relating the two 
unknown boundary stiffness matrices and the limit w → 0 lead to an algebraic matrix Riccati 
equation for the boundary stiffness matrix K = Ki: 
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wherein we have introduced the identity matrix I. We determine a solution from the equivalent 
eigenvalue problem which reads: 
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Herein, Φ11, Φ12, Φ21, Φ22 are submatrices of the matrix of eigenvectors, the diagonal matrix λ 
includes the corresponding eigenvalues. The boundary stiffness matrix K = Ki then results in: 
   1
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The first of eqns (5) finally yields a system of non-linear first order differential equations for the 
displacements after again performing the limit w → 0: 
   ( )1 1

, 11 11 2 .rru Φ λΦ I u−= −  (9) 
A closed-form solution is possible and with the boundary displacements u0 reads: 

   ( )
1
2

0

1
11 11 0diag .ir

ru Φ Φ u
λ − − =     (10) 

From the displacement solution eqn (10), strains and stresses are obtainable. After performing the 
limit w → 0 and solving the matrix Riccati equation, the BFEM basically consists of the 
introduction of a pattern of surface elements on the boundary of the structure only, hence reducing 
the spatial dimension of discretization by one. An analytical solution for the displacements with 
respect to the radial coordinate is possible, in the circumferential directions the BFEM converges 
in the FEM sense, thus rendering the BFEM a semi-analytical method.  
 

2  RESULTS FOR THREE-DIMENSIONAL STRESS SINGULARITIES 
The BFEM incorporates singular stresses in a natural way due to the power law form of the 
displacement solution eqn (10). Hence, the BFEM can be used efficiently in particular for the 
asymptotic investigation of stress singularities for several classes of elasticity problems for which 
the displacements and stresses are usually formulated as infinite series in variable separable form: 
   ( )1 21

, ,m
m

i m imm
u K r gλ ϕ ϕ=∞

=
=∑    ( )1

1 21
, .m

m
ij m ijmm

K r fλσ ϕ ϕ=∞ −
=

=∑  (11) 

Herein, we have introduced a spherical coordinate system r, ϕ1, ϕ2, with r being the radial 
direction. At the point r = 0 a stress singularity is assumed to occur. For the behaviour of the state 
variables a power law form is assumed, the angular variations are described by the functions gim 
and fijm. The quantities Km are generalized stress intensity factors, the λm are eigenvalues that may 
be either real or complex. When Re(λm) < 1 the stresses become singular when r → 0. Due to 
energetic reasons only eigenvalues fulfilling 0 < Re (λm) < 1 are of interest. The order of stress 
singularity is then calculated as the exponent λm - 1 of the stress representation.  
 
2.1  Stress singularities at the vertex of a surface breaking crack 
The situation of a surface crack in an isotropic halfspace with the crack front perpendicular to the 
free surface (fig. 2, upper left portion) is a well-known benchmark example within the context of 
three-dimensional fracture mechanics. Numerical results for the order of the occurring stress 



singularity at the crack vertex have been reported by e.g. Somaratna / Ting [2] or Dimitrov et al. 
[4]. The similarity center is presently placed at the crack vertex at x = y = z = 0. The cracked 
halfspace is situated in the region r ≥ 0, 0 ≤ ϕ1 ≤ π/2, 0 ≤ ϕ2 ≤ 2π. The areas r ≥ 0, 0 ≤ ϕ1 ≤ π/2, ϕ2 
= 0 and r ≥ 0, 0 ≤ ϕ1 ≤ π/2, ϕ2 = 2π are the stress free crack surfaces, the crack front runs parallel 
to the positive z-axis. The stress free surface of the halfspace is situated at z = 0. The surface Γ of a 
unit sphere at r = 1 has been discretized with 8-noded quadrangular surface elements wherein a 
mesh refinement has been applied in the vicinity of the point x = y = 0, z = 1 where the crack front 
intersects with the discretized surface Γ. The symmetry of the given situation has been considered 
for a reduction of the computational effort: for symmetric deformation modes the displacements u2 
were prescribed as u2 = 0 on the symmetry line Γs, for unsymmetric deformation modes ur = u1 = 0 
holds on Γs. Thus, only one half of the crack situation had to be discretized, e.g. enclosed in the 
range r = 1, 0 ≤ ϕ1 ≤ π/2, 0 ≤ ϕ2 ≤ π. We have varied Poisson’s ratio of the assumed isotropic 
material and found three eigenvalues λ with 0 < Re (λ) < 1 in the range 0 < ν < 0.3 (fig. 2, upper 
right portion). For values above approximately ν = 0.3, only two relevant eigenvalues remain. Note 
that the dominating eigenvalue exceeds the well-known r-0.5-singularity of the two-dimensional 
Griffith-crack situation in all cases. In all, the BFEM computations show a good conformity with 
the results of Somaratna / Ting [2] and Dimitrov et al. [4]. 
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Figure 2:  3D stress singularities at the vertex of a surface breaking crack, upper portion: crack in 
an isotropic halfspace, lower portion: interface crack between an isotropic halfspace and a rigid 

substrate. 
 
The situation of an interface crack between an isotropic halfspace and a rigid substrate is simulated 
by setting ur = u1 = u2 = 0 on Γs and again only discretizing the surface of the region r = 1, 0 ≤ ϕ1 ≤ 
π/2, 0 ≤ ϕ2 ≤ π which is assumed to contain the linear elastic material. The BFEM results are 



displayed in fig. 2, lower portion, along with the FEM results as reported by Barsoum [3] with 
which a good agreement is found. In the range of approximately 0 < ν < 0.20 a dominating 
complex eigenvalue arises which for ν > 0.2 splits into two separate values. At the bifurcation 
point a logarithmic stress singularity occurs. A further relevant real eigenvalue of lower power 
arises in the range of about 0 < ν < 0.24. Again, the dominating eigenvalue exceeds the typical 
two-dimensional r-0.5-singularity.  
 
2.2  Stress singularities in the vicinity of a free laminate corner  
Consider a laminated plate with layers consisting of a typical fibre reinforced plastic (see [8] for 
details). There is a special interest in information about the occurring stress singularities in the 
vicinity of free laminate corners (so-called free-corner effect [6-8]) in the interfaces between two 
dissimilar laminate layers. Let us consider arbitrary corner opening angles 0 ≤ γ ≤ 2π (fig. 3, left 
portion). In the upper layer (layer 1) of the considered bimaterial interface, the fibers are orientated 
parallel to the global y-axis. The fibers of the lower layer (layer 2) are assumed to run parallel to 
the global x-axis. We thus consider a so-called cross-ply [90°/0°]-interface. The laminate corner 
region is situated in the interval r, 0 ≤ ϕ1 ≤ π, 0 ≤ ϕ2 ≤ γ, the planes r, 0 ≤ ϕ1 ≤ π, ϕ2 = 0 and r, 0 ≤ 
ϕ1 ≤ π, ϕ2 = γ  represent the traction free laminate edges. Laminate layer 1 is found in the interval 
r, 0 ≤ ϕ1 ≤ π/2, 0 ≤ ϕ2 ≤ γ whereas layer 2 occupies the region r, π/2 ≤ ϕ1 ≤ π, 0 ≤ ϕ2 ≤ γ. The 
interface between the two dissimilar laminate layers coincides with the xy-plane at z = 0. The 
surface Γ at r = 1 has again been discretized with 8-noded quadrangular surface elements wherein 
the corner tip presently coincides with the similarity center of the BFEM mesh. A mesh refinement 
was used around the points r = 1, ϕ1 = π/2, ϕ2 = 0 and r = 1, ϕ1 = π/2, ϕ2 = γ  where the two free-
edge interfaces intersect with the BFEM mesh. For corner angles γ > π, a further mesh refinement 
was applied in the vicinity of the points x = y = 0, z = 1 and x = y = 0, z = -1. Reference results for 
the order of the three-dimensional stress singularities at the corner tip x = y = z = 0 are found in 
e.g. Dimitrov et al. [8] and excellently agree with the present BFEM computations. For corner 
angles in the interval 0 ≤ γ ≤ π only one real relevant eigenvalue arises. This stress singularity is of 
low order λ - 1 which is also a well-known experience considering free-edge effects in composite 
laminates [6]. For corner angles γ > π, two additional stronger eigenvalues occur which also lead 
to singular stresses in the vicinity of the free laminate corner, at about γ = 13π/9 a fourth relevant 
eigenvalue occurs. A maximum eigenvalue is found at approximately γ  = 11/6π which is even 
slightly above the well-known two-dimensional r-0.5-singularity. 
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Figure 3:  3D stress singularities at a [90°/0°]-interface at the tip of a free laminate corner with 

arbitrary opening angle γ.  
 



3  SUMMARY AND CONCLUSIONS 
The boundary finite element method (BFEM) has been employed for the semi-analytical 
computation of the orders of stress singularities for some classes of three-dimensional elasticity 
problems. In all presented cases the BFEM results agree very well with reference results and thus 
render the BFEM a powerful tool for the investigation of three-dimensional singular stress 
concentration phenomena in linear elastic solids. The BFEM requires significantly lower 
numerical effort in comparison to standard numerical methods like e.g. the finite element method 
and is thus especially useful for exhaustive parameter studies or optimization procedures. 
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