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ABSTRACT 

The common size effect on quasi-brittle fracture of concrete-like materials is analysed by a simple asymptotic 
analysis based on a boundary effect model originally proposed for a large plate with a small edge crack.  The 
large plate analysis considers exclusively the interaction of the crack-tip fracture process zone with the 
specimen front face and its influence on the fracture conditions.  The new asymptotic model considers both 
the specimen boundary and size, and thus extends the boundary effect model to the size effect study on finite-
sized specimens.  The new boundary effect model shows that the specimen size alone is not sufficient in 
determination of the size effect on quasi-brittle fracture behaviour, the specimen boundary conditions have to 
be considered as well.  It is shown that even very large specimens that normally do not show any size effect 
can still experience quasi-brittle fracture if they contain very shallow or very deep cracks.  The new boundary 
effect model uses the two well-defined fracture criteria, the tensile strength and fracture toughness, as its two 
asymptotic limits, which allows the determination of the two important material constants from the quasi-
brittle fracture results.  The size effect issue in concrete specimens without initial notches is also studied by 
the asymptotic model after assuming the natural pre-existing defects in concrete as very shallow notches.  
The geometrically similar specimen condition can be satisfied by those assumed shallow notched specimens. 
 

1  INTRODUCTION 
Size effect, or the quasi-brittle fracture transition behaviour occurring with the variation in 
specimen size, has been studied for many years as neither the traditional strength nor fracture 
toughness criterion applies (Bažant [1], Carpinteri & Chiaia [2], Karihalloo [3], Hu & Wittmann 
[4], Duan & Hu [5-7], Duan et al [8]).  Most commonly, the specimen size, W, is taken as the sole 
variable and the geometrical similarity in specimens has been taken as the prerequisite condition in 
size effect modelling.  Under those conditions, typically two unknown parameters need to be 
determined experimentally from the quasi-brittle fracture results through curve-fitting.  It is known 
that those two experimentally-determined parameters may vary even for a single material if 
different specimen geometry and loading conditions are involved. 
     Clearly, it would be preferred if the two experimental parameters were constants and 
independent of specimen geometry and loading condition.  Furthermore, it would make 
experiments lots easier if the geometrical similarity condition could be removed.  In fact, when the 
ligament or size effect on the specific fracture energy GF is considered, specimens of a given size 
but different notch (and then ligament) lengths are often preferred instead of geometrically similar 
specimens (e.g. Hu & Wittmann [9]). 
     We have studied the quasi-brittle fracture behaviour of a large plate with a small edge crack 
(Hu [10,11], Hu & Wittmann [4], Duan & Hu [5-7], Duan et al [8]).  Indeed, two material 
constants, the tensile strength ft and fracture toughness KIC have been used in the asymptotic 
model.  Although the specimen size is large enough, the large plate can still experience quasi-
brittle fracture or even pure strength controlled failure depending on the crack length and the 
crack-tip fracture process zone (FPZ) size.  As expected, the fracture toughness KIC criterion 
applies if the edge crack is long enough.  Actually, the fracture transition of the large plate from 
the ft to KIC criterion is identical to the size effect problem commonly studied using geometrically 

 1



similar specimens of different sizes.  The only difference is the specimen size of the large plate 
does not vary, but the crack length varies, which shows how the specimen front face and FPZ 
influence the quasi-brittle fracture behaviour.  However, it is noted that the large plate assumption 
is not as practical as the geometrically similar specimen condition.   
     Therefore, the objective of the present study is to extend the previous asymptotic model for the 
special case of a large plate to more common finite-sized specimens, and to show that two material 
constants, ft and KIC, can be used as two scaling constants instead of adopting two experimental 
parameters.  It is also going to be shown that geometrical similarity in specimens is not necessary 
for the size effect study.  Therefore, for a given material, finite-sized specimens of different size 
and geometry under different loading conditions will follow a unique asymptotic curve specified 
by ft and KIC. 
 

2  ASYMPTOTIC SOLUTION FOR QUASI-BRITTLE FRACTURE 
 

2.1 Boundary effect model for large plate 
 
Here, the definition of a large plate is that the geometry factor Y = 1.12 for the range of the edge 
crack length under investigation and the specimen size is large enough so that KIC is applicable if 
the initial short edge crack is increased while Y remains as 1.12.  Therefore, the specimen size 
needs not to be considered here or can be taken as a constant. 
     The asymptotic solution for the nominal strength of the large plate with a small edge crack 
shown in Figure 1(a) has been derived (Hu [10], Hu & Wittmann [4]), 
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Figure 1: Two nominal strengths for (a)
large plate and (b) SENT specimen: σN

without consideration of the crack and σn
with consideration of the crack. 

Figure 2: Boundary-effect asymptotic 
curve, eqn (1) for a large plate with a small 
edge crack where Y = 1.12 and a*

∞ = 
0.25⋅(KIC/ft)2. 
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The nominal strength σN does not consider the presence of the edge crack while σn does.  They are 
identical for a large plate, but different for finite-sized specimens, e.g. as shown in Figure 1(b). 
     The condition Y = 1.12 has been used in eqn (1), and the subscript ∞ indicates the large plate 
condition.  The reference crack a*

∞ is a material constant, and is a measurement of the crack-tip 
FPZ for a quasi-brittle material, or the crack-tip plastic zone for a ductile material since it is 
proportional to (KIC/ft)2.  The reference a*

∞ is also illustrated in Figure 2.   
 
2.2 Boundary effect model for finite-sized specimens 
 
The common single-edge-notch-tension (SENT) specimens illustrated in Figure 1(b) provide the 
most direct comparison to the large plate discussed in the previous section.  In this case, the 
geometry factor Y is not equal to 1.12, but depends on the crack size, or the α-ratio (= a/W). 
     As shown in Figure 1(b), the two nominal strengths are related as follows: 
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The two nominal strengths are identical when α = 0, which is the case for the large plate.  σN is 
used for the stress intensity factor formulae, and has been commonly used for various size effect 
models.  Here, σn is preferred for the following reasons.  It is expected that the tensile strength 
criterion ft will apply if α → 0 and → 1.  If σN is used in a model, it will become zero and the 
asymptotic limit for α → 1 will not be satisfied.  The nominal strength σn considering the presence 
of the crack is clearly a better choice. 
     For any given material, a suitable specimen size can always be found so that the KIC criterion 
applies for a moderate α-ratio around 0.5.  In this case, the following classic relationship is valid. 
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The geometry factor Y(α) for SENT specimens is found in [12].  Note that σN instead of σn is used 
in eqn (3).  Now, we can solve the nominal strength σn from eqn (3), i.e. 
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Eqn (4) can be taken as the asymptotic limit when the crack ratio ae/a*
∞ >> 1 or when the KIC 

criterion applies.  If a/a*
∞ >> 1, eqn (1) becomes: 
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Comparing eqns (4) and (5), the general asymptotic solution for finite-sized specimens can be 
written as: 
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Eqn (6) holds even if neither KIC nor ft applies.  Β(α) and ae used in eqn (4) are as follows: 
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Equations for other geometries such as three-point-bend (3-p-b) or compact tension (CT) are the 
same.  Only Α(α) and Y(α) need to be worked out for individual specimen geometry. 
     Eqn (6) for SENT is shown in Figure 3(a) as scaled by a/a*

∞ with the non-dimensional 
specimen size specified by W/a*

∞.  For very small specimens (W/a*
∞ = 1), σn ≈ ft and the crack size 

has no influence on fracture.  Therefore, the strength criterion applies.  Increasing the size to W/a*
∞ 

= 100, the quasi-brittle fracture behaviour is observed.  When the crack reaches the specimen back 
face (a = W), σn ≈ ft and the strength criterion is again valid.  For very big specimens (W/a*

∞ = 
10,000), we have pure strength controlled failure at both the front and back faces of the specimens, 
quasi-brittle fracture and KIC controlled fracture regions.  The large plate solution from eqn (1) is 
also shown in Figure 3(a). 
     Eqn (6) for SENT is shown in Figure 3(b) as scaled by ae/a*

∞, which transforms the back face 
asymptotic solution to that of the front face.  The turning points are marked on the curve of the 
large plate asymptotic solution from eqn (1).  Clearly, eqn (1) determines the unique fracture curve 
while the specimen size W determines the turning point along the master curve.  Eqn (6) can be 
approximated by the pure strength controlled failure if ae/a*

∞ ≤ 0.1, and the pure toughness 
controlled fracture if ae/a*

∞ ≥ 10, as indicated in Figure 3(b). 
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Figure 3: (a) Asymptotic fracture curve of the large plate, and quasi-brittle fracture curves of
SENT specimens, with the common starting point at the front face, but different ending points at
the back face depending on the specimen size W.  (b) The unique asymptotic fracture curve based
on eqn (6), with the common starting point for both front and back boundaries.  α = 0.2 ~ 0.4 at the
turning points. 
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2.3 Comparison of boundary and size effect models 
 
The well-known size effect model proposed by Bažant [1] for geometrically similar specimens is 
as follows. 
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Note that σN, rather than σn, is used.  A and W* need to be determined from experimental results.  
Comparing eqns (6) and (8), we obtain the following results. 
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Α(α) related the two different nominal strengths as shown in eqn (2) can be easily worked out for 
various specimens such 3-p-b, CT and SENT.  Β(α) can be worked out following eqn (7) for the 
corresponding specimen geometry.  Figure 4 shows the A and W* results for those common 
specimens.  Clearly, A and W* are strongly α-ratio dependent.  A and W* as determined by the size 
effect model can only be treated as experimental parameters for a particular set of geometrically 
similar specimens.  The present boundary effect model based on the large plate asymptotic 
provides the detailed expressions for those two parameters as shown in eqn (9). 
 

3 DISCUSSION AND CONCLUDING REMARKS 
We have studied experimental results available from the literature (Duan & Hu [5-7], Duan et al 
[8]).  One useful feature of the present boundary effect model is that very shallow cracks (α-ratio 
→ 0) can be studied.  Therefore, un-notched concrete specimens containing natural distributed 
defects can be modelled by notched specimens with equivalent shallow notches.  For instance, the 
concrete results (Karihaloo et al [13]) are shown Figure 5 (Duan & Hu [7]), the results from both 
notched and un-notched specimens are presented together.  It is determined that the un-notched 
specimens have the equivalent α-ratio of around 0.012. 

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
α

Α
( α

)

3-p-b

SENT

CT

10

100

1000

0 0.2 0.4 0.6 0.8 1
α

W
* /a

* ∞

3-p-b

SENT

CT

Figure 4: α-ratio dependence of SEL scaling parameters (a) A and (b) W*. 

(a) (b) 

 

 5



 

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Log a e

Lo
g σ

n

EX0.30
Ex0.1
Ex0.05
Unnotched

f t  = 10.96 

a *
∞ = 5.72 mm

α  = 0.3
α  =0.1
α = 0.05
un-notch or 
α  = 0.012

Figure 5: Comparison of the prediction using
eqn (6) with the σn data of high strength
concrete (HSC) measured on both notched and
un-notched 3-p-b beams (Karihaloo et al [13]). 

 
ACKNOWLEDGMENTS 
The financial support from the Australian Research Council (ARC) under the scheme of Discovery 
Grant is acknowledged. 
 
REFERENCES 
1. Bažant ZP, Size effect in blunt fracture: concrete, rock, metal, J. Eng. Mech. (ASCE) 110, 

518-535 (1984). 
2. Carpinteri A, Chiaia B, Multifractal nature of concrete fracture surfaces and size effect on 

nominal fracture energy, Mater Struct 28, 435-443 (1995). 
3. Karihaloo BL, Size effect in shallow and deep notched quasi-brittle structures, Int. J. Fract. 

95, 379-390 (1999). 
4. Hu XZ, Wittmann FH, Size effect on toughness induced by crack close to free surface, Eng 

Fract Mech 65, 209-221 (2000). 
5. Duan K, Hu XZ, Asymptotic analysis of boundary effect on fracture properties of notched 

bending specimens of concrete, Structural Integrity and Fracture (The Proc. SIF2002), eds. A 
V Dyskin, XZ Hu, and E Sahouryeh, A.A.Balkema Publishers, Lisse, The Netherlands, pp.19-
24 (2002). 

6. Duan K, Hu XZ, Asymptotic Analysis of Boundary-Effect on Strength of Concrete, Proc 
FraMCoS-5 (FraMCoS-5, April 12 –16, 2004, Vail Colorado, USA), in press. 

7. Duan K, Hu XZ, Scaling of quasi-brittle fracture: boundary effect, to be published. 
8. Duan K, Hu XZ, Wittmann FH, Scaling of quasi-brittle fracture: boundary and size effect, 

Mater. Mech., in press. 
9. Hu XZ, Wittmann FH, Fracture energy and fracture process zone, Mater. Struct. 25, 319-26 

(1992). 
10. Hu XZ, Size effect in toughness induced by crack close to free edge, Fracture Mechanics of 

Concrete Structures (Proc. Framcos-3), eds. H Mihashi and K Rokugo, Aedificatio 
Publishers, Freiburg, pp.2011-2020 (1998). 

11. Hu XZ, An asymptotic approach to size effect on fracture toughness and fracture energy of 
composites, Eng. Fract. Mech. 69, 555-564 (2002). 

12. Tada H, Paris PC, Irwin GR, The Stress Analysis of Cracks Handbook (3rd Ed.). New York: 
ASME Press, 2000. 

13. Karihaloo BL, Abdalla HM, Xiao QZ, Size effect in concrete beams, Eng Fract Mech 70, 
979-993 (2003). 

 6


	1  INTRODUCTION
	
	ACKNOWLEDGMENTS



