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ABSTARCT 

The phenomenon of failure by catastrophic crack propagation in structural materials poses problems of design 
and analysis in many fields of engineering. Cracks are present to some degree in all structures. They may 
exist as basic defects in the constituent materials or they may be induced in construction or during service 
life. 
Using the finite element method, a lot of papers deal with the calculation of stress intensity factors for two- 
and three-dimensional geometries containing cracks of different shapes under various loadings to elastic 
bodies. In order to increase the accuracy of the results, special singular and transition elements have been 
used. They are described together with methods for calculating the stress intensity factors from the computed 
results. These include the displacement substitution method, J-integral and the virtual crack extension 
technique. 
Despite of the large number of published finite element stress intensity factor calculations there are not many 
papers published on J-integral to elastic-plastic bodies. 
At the vicinity of a crack tip the strains are not always small, but they may be large ones, too. In this case the 
J-integral can also be applied to characterise the cracks in elastic or elastic-plastic bodies. 
This paper describes the computation of two dimensional J-integral in the case of large strains to elastic and 
elastic-plastic bodies and represents some numerical examples, too. 
 

1  INTRODUCTION 
Over the past decades the finite element technique has become firmly established as a useful tool 
for numerical solution of engineering problem and would at first sight appear to be an ideal 
method of studying crack behaviour in materials. In order to be able to apply the finite element 
method to the efficient solution of fracture problems, adaptations or further developments must be 
made.  
     Lau and his co-workers [1], [2] presented a revised J-estimation method under large plastic 
deformation. May and Kobayashi [3] investigated plane stress stable crack growth and J-integral 
using Moire interferometry to determine the two orthogonal displacements in a single edge crack 
specimen. Boothman and his co-workers [4] developed the J- and Q-estimation schemes for 
homogeneous plates.  Jackiewicz [5] applied a hybrid model of steel cracking. The hybrid model 
uses a finite element simulation combined with an experimental test realised in the macro scale. 
Bouchard and his co-workers [6] demonstrated their two-dimensional local approach finite 
element study compared with the conventional J-estimation schemes and cracked body J-integral 
analysis. Saczuk and co-workers [7] presented a continuum model with inelastic material 
behaviour and a generalisation of the J-integral.  
     The aim of this paper is to develop a two-dimensional J-integral in the case of large strains for 
elastic and elastic-plastic material behaviour using the finite element method and to present some 
calculated numerical examples. 
 

2  DEVELOPMENT OF J-INTEGRAL 
Figure 1. shows a line integral path, which encloses the crack tip and has initial and end points, 
which lie, on the two crack faces. It has been shown independently by Rice [8] and Cherepanov 



[9] that the following integral quantity is path independent when taken along any path, which 
satisfies the above conditions.  
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Figure1: Contour path for J1 - integral evaluation 
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     In this expression U is the strain energy density, Ti is the traction vector on a plane defined by 
the outward drawn normal, ni and ui is the displacement vector, ds is the element of arc along the 
path, Γ.  For a closed path not containing the crack tip, J1 = 0. 
     Knowles and Sternberg [10] noted that this expression could be considered as the first 
component of a vector: 
 

( ) sdxuTnUJ kiikk �
Γ

−= ∂∂ .    (2) 

     This integral is also path - independent provided the contour touches each surface of the crack 
at the tip. For elastic - plastic applications it is necessary to employ the appropriate definition of 
the strain energy density: 

 
U = U e + U p.  (3) 

 
Ue is given by 
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where ( )

ejiε  denotes the elastic components of strain. The plastic work contribution is given by  
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 In this expression σ  and pε  are the effective stress and effective plastic strain.  
     Figure 2 represents the motion of a continuum with the initial and present configurations. 

 
Figure 2: Motion of the continuum in the (xyz) reference coordinate-system 

 
 
     Let us suppose that egn (2) is valid in the present configuration in the case of large strains. As 
the initial configuration is known it is necessary to express the quantities in the integrand by means 

of 0E  Green-Lagrange strain and 0T II.Piola-Kirchhoff stress tensors. For elastic applications it 

can be proved that instead of the strain energy density U we can write the next formula: 
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     The element of arc is 
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where 0ds is the element of arc in the initial configuration and sλ is the stretch. The traction vector 

can be expressed in the next form: 
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where 

0T  - II. Piola –Kirchhoff stress tensor, 
0E  - Green-Lagrange strain tensor, 

F    - strain gradient tensor, 

I    - unit tensor, 
0n

�
 - the outward drawn normal in the initial configuration, 

FDet=δ  - Jacobian determinant. 

     As 0uu
��

= , after some changes we can obtain the two components of J in two dimensions: 
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     It can be seen in Figure 2 that 00 urr

���
+= , therefore we can write the next expressions: 
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     The derivatives 
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plastic applications it is necessary to employ the appropriate definition of the strain energy density: 
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where 0
eU  is given in eqn (6) and 0

plU  is similar to eqn (5): 
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In this expression 0T  and 0
plE  are the effective stress and effective plastic strain in the initial 

configuration. Using the finite element method the integration in eqn (9a) and eqn (9b) must be 
undertaken numerically. It can be proved that in the case of large strains the singular and transition 
elements can be applied, too. In the case of inclined cracks two co-ordinate systems are necessary 
in the initial configuration using the appropriate transformation. 
 

3 NUMERICAL EXAMPLES 
The example considered is that of a plate under tension which contains a crack of length 8 mm 
perpendicular to the direction of loading. The width of the plate is 20 mm and the thickness 
assumed to be unity. The length of the plate is 50 mm. In the first calculations the material was 
linear elastic with the properties E=10000 MPa, ν=0.3. The applied tensile traction was p=100 
MPa. The finite element mesh represented only one quarter because of the symmetrical properties 
of the body (Figure 3). The finite element mesh didn’t contain special elements. 
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    Figure 3: Finite element mesh                              Figure 4: Calculated J-integral values 
 
Theoretically Jy is zero for this problem. Figure 4 represents the calculated J-integral values. 
     In the second computations the material of the plate was linear elastic – linear hardening with 
H’= 0,1 E. The loading was applied in incremental steps. The increments were: 1,0; 0,1; 0,1; 0,1. 
The calculated J-integral values can be seen in Figure 5 for small strains and in Figure 6 for large 
strains. 
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       Figure 5: J-integral values for small strains          Figure 6: J-integral values for large strains 
 

3  CONCLUSIONS 
This paper presented the formulations and applicability of J-integral for large strains. The 
characteristics of the diagrams are very similar to those which were obtained for small strains. 
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